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COMPUTATION OF THREE-DIMENSIONAL FIELD OF MOTION IN CANALS
AND BASINS USING HYDRODYNAMIC NUMERICAL METHODS

Jurgen Slindermann

I. Statement of Problem and Summary /1%

In the last two decades, hydrodynamic numerical methods have
been increasingly employed in sstiiddies of motlon processes not
only in natural marine areas, rivers, and rlver mouths, but also
in model basins and canals. One of the primary goals was to
study first the horizontal component of the flows, which domi-
nates due to the natural geometry. Accordingly, the mathematical
models employed were generally based on the vertically integrated
hydrodynamic differential equatlons. Machlne capaclty considera-
tlons also played a role In this declision. With the aid of such
models, a large amount of fundamental new information in dynamic
oceanography has been acgquired since the endsof the '40s. The
HN method developed by Hansen has dontributed greatly to this
effort.

Once 1t became evident that the two-dimensional methods were
working well 1n practlice, it became more and more desirable to
inelude the vertical dimension as well -- which is very important
for many marine processes -- 1n the mathematical models. DBecause
of the rapid development of electronic computers as well, the
present appears to be the right time to deal with more and more
hydrodynamlic preblems in three-dimensional fterms.

The present work makes a contribution to this development by
generalizing the HN method worked out by Hansen for the three-
dimensional treatment of motion processes in water. The relevant
considerations are presented in Chapter II; once thesspatial HN
model has been constructed, particular attention is given to
questions of numerical stability. In Chapter III, some selected
examples are glven for the application of the method developed
here.

In many cases, the studies can be restricted to canal models
with one horizontal and one vertical dimension, since the funda-
mental problems of the "vertical expansion" of the HN method can
alreddy be fully analyzed in these models as well. Extension to /2
genuinely spatial conditions with two horizontal dimensions is __
then chiefly a technical problem, and has also been undertaken.

¥ Numbers In the margin indicate paginatlon in the foreign text.



The results presented here assilst in a numerical study of the
vertical structure of motion processes in canals and basins. Of
course, there must be a great deal more work in this field in
order to match the three~dimensional HN modéls better to the
natural sltuations, and in order to clarify the related mathemati-
cal questions.

T am indebted to Prof. W. Hansen for many useful suggestions
and discussions. T would also like to thank R. Krautwald and
S. Welland for the careful preparation of the drawings.

IT. Three-Dimensional Extension of the Hydrodynamic Numerical
Methed

1. The Basic Hydrodynamic Egquations

The sfarting point for all subsequent considerations is the
set of general hydrodynamic differential equatlons, which, in
carteslan form, read (see e.g. Siindermann [1]):

. Bquations of motion
ey
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Continuity equation (for an incompressible medium)

i 9.- ) B N
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The cartesian coordinate system is to be oriented §o that the
x~axls polnts to the east, the y-axis to the north, and the z-axis
vertically upward. The origin is located at unperturbed gea level
(ef. Fig. 1). Additional definitilon:

u, v, W Components of flow velocity

B Pressure

X, ¥, Z Componentssof external force (relative to unit of
mass)



P Density

Axg, Ay Horizontal and vertical exchange coefficients
£, T Coriolis parameter with f = 2wsin¢, f = 2wcosé
(v = angular velocity of Earth)
(A Time
A Two- dimensional Laglace operator:
A= 92/3%2 + 3/3y

These four equations describe the dynamics of the water. If é&
the field of external forces 1s known, the oceanographic problem
of determining the motionpprocesses in the sea can be replaced by
the equivalent mathematical problem, thatudfiintegrating the system
of partlal differential equations (1) with certain initial and
boundary conditions. Mathematlcally, the problem can be solved,
1f the problem i1s properly formulated {(in the sense of Courant-
Hilbert {21]).

In general, the system (1) cannot be solved in analytic
closed form because of ity nonlinearity. In applicatlons to motion
processes 1n natural marine areas, the complicated geometry,
which cannot be described analytlcecally, presents a further ob-
stacle. What can be done? First, in many practical cases, it
1s not at all necessary to take into account all terms of the
system (1), since some of them are negligible. For instance, the
following assumptions are often permissible (cf. e.g. Bretts
schneider [3]):

(1) The convectiwve terms are negligibly small.
(2) The Coriolis terms with f are negligibly small.

(3) In the third equation of motion, the terms with
dw/3t, Aw, and 32w/322 can be dropped in comparison with the other
terms.

(L) Horizontal exchange can be neglected.
(5) The vertical exchange coefficlentiis constant.

(6) The external forces X and Y are negligibl&lsmall, and
Z = ~-g. ’

(7) p = lwg/cm3.

Of course, the légitimacy of these assumptions must be veri-
fied in each individual case. If they are valld, then (1)
acquires the following form:
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For motions in horizontal, one-dimensionazal channels (rivers,
canals),{{2) simplifies, since in general no crosscurrents have
to be taken into account, so that the x-axls can be placed along
the @akis of the canal without loss of generality. The motlons are
then described by the following system of eguations:

'3 | 2 J

Soalrekee -2
:

! P

4; 55 =~ 9 (3.2)

Since the convective terms have been neglected, the systems
(2) and((3) are quasi-linear; nevertheless, they can be substan-
tially influenced by nonlinearities —-— as will be found later in
the vertical integration.

This circumstance, and the fact that the complicated geo-~
metrical structure of natural marine areas cannot be represented
analytically require the use of numerical methods, but these are
currently quite feasible due to the existence of electronic com-
puters. These methods have the crucial advantage that in princi-
ple, any sultably formuldted problem can be solved. However,
there are also drawbacks, in particular:

(1) rumerical difficulties not related to the problem appear;
(2) the deep understanddnig provided by analytical relations

cannot be completely replaced by a large quantityes of numerical
values;



(3) frequently, a large amount of numerlical data must be
stored, and even the storage of electronlc computers cannot cope
with this information.

Therefore, in the hlstorical development, horizontal motions éﬁ
have been treated firsttifnthe overwhelming majority of cases.
Because of the dimensions of natural formations, horilzontal motions
are generally the most important as well. In spite of the re-
striction to twoddimensional areas, many valuable results have been
obtained and deep insights have been achleved into the internal
dynamic relationships in thils fashion. For many problems,.con-
sldering just horizontal motions 1s completely sufficilent.

2. The Two-Dimensiocnal HN Method

The dimension is reduced by one by integrating the equations
vertically._ Instead of the velocity u and v, we use mean velocil-
ties u and v, which at a point (x,y) apply for the entire vertical
direction; vertical velocities are not calculated. The limits of
integration are glven by the actual surface r of the sea, i.e.
the perturbation from the undistunbed level, and the bottom of the
sea (Fig. 1). The mean horizontal velccities are then defined

by
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In the integration, the usual boundary-surface condlitions
(see e.g. [1]) are employed (S = surface, B = bottom):

Lo - - - L ' . L:j
9% A s
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{b) Newton-Taylor shear stress formulation
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Fig. 1. Threétdimenstonal
Cartesian coordinate system.
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In these equations,

(X) and T(y) are the components
of the shear stress vector at
the boundary surfaces, and U and
V are the components of the
alr veloclty at the surface. r
and A are dimensionless constant
frictionpparameters.

If i1t is further assumed that:

(¢) Pg = constant, and
(@) |4 =2
Ll'f't (14 “aa)"" <<
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R LI TCE
The system (3) can be integrated analogously to obtain:

o " (7.1)



The starting equations{(6) and (7) have been utilized in /8

W D ey
j prii -é-;({h-:tj"'t )

= O % (7.2)

numerous studies of the Hamburg Institute for Marine Science —wui

(IfM) and have worked very well.

To integrate ; (6) and (7), one must know the wind, the topo~
graphy of the region (depth distribution, configuration of the
coasts) and suitable dnitial and boundary conditions. In many
cases, the boundary conditions can be formulatedidntthe form (8):

(1) The normal component of the velocity at the (8.1)

coast is zero.

{(2) Water levels are prescribed at boundaries {8.2)
running through the open sea.

The inlitial conditions can be chosen arbitrarily. In genes
ral, the system 1s presumed to be at rest at the outset:

Y, N

+
x
. 4+

+
x
. +
T—x.l.j ®
N
X

+
X
T
.\
L3
+
x
3
+
—

Pig. 2. Two-dimensional
HN grid, after Hansen ¢
(with indexing}. The &
smooth ecurve represents
the natural coastline,

and the heavy lines with
right-angle corners is its
approximation iIn the model.
The symbols mean:

+ g-computing point,

x u-computing point,

- vy-computing polnt.

(see Hansefia@ibdpy Bréttschhéider
680, Silndermann,[1], Réber [6]).
In so%¥ing the systéms (6) and
(7) numerically, the hydrodynamic
numerical (HN) method developed
by Hansen [4], an explicit dif-
ference method, has worked par-
ticularly well. The method does
not have to be discussed here in
detail .-~ it has already been
done in a number of works

(Hanse [4], Fischer [7],
Brettschnéfder [3], Slindermann [1]).

In the two-dimensional Car-
teslian case {(i.e. a marine area
very small in comparison with the
surface of the Earth), which ds
to be investigated here, the HN
method employs a rectangular
grid, superimposed on the marine
area to be studded (Fig. 2). The
arrangement of the points at
which water level and velocity
components are calculated is that
depicted in Filg. 2. This grid
ls particuldarly well suited to the
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structure of the hydrodynamic differential equations. The spatial
differential quotilents in (6) can be represented very simply by
using central differences. The boundary condltions (8) can be
applied just as easily by having the schematic boundaries of the
mathematical models pass just through points at which u and v are
calculated when the boundarycis a coast, and through ¢-points for
open boundaries. The natural depths are likewise specified at

u- and v-peints. If the grid 1s chosen sufficiently fine, the
numerical model can be largely matched to natural conditions.

Forward differencesy are employed to approximate the time
derivatives. The numerical solution must be imagined as a finite
collection of computing planes of the type shown in Fig. 2 at
successive instance of time (Fig. 3). The mathematical model form-
ulated in this way to simulate the natural motions 1in the sea 1s
is designated the hydrodynamic numerical (HN) iodel.
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In these eguations, the following symbols are used:

hytn,m) Constant natural depth at u-point (n,m)

h,(n,m) Constant natural depth at v-point (n,m)
(because of the structure of (6), it is not neces-
sary to define the depth at r-points)

Hy(n,m} Current depth of water at u-point (n,m)

Hy (A ,m) Current depth of water at v-point (n,m)

Uy, YV Components of vector of wind veloclty at u-point /11
Uy, V& Components of vector of wind velocity at v-point

At Time increment

AL Distance increment

The equations in (10) are to be averaged arithmetically, since
the unknowns are calculated at different points.

In difference forms, the boundary conditions (8) read:

u(n,m) = 0 or ¥(n,m) = 0,sif (n,m) € boundary (11.1)



t(n,m) = g5(n,m), if (n,m) e boundary (11.2)

In the one-dimensional case, the method just explained must
be memely restricted in an appropriate sense (Hansen [5], Rose
[8], Ramming [9]). The differential equations then read (see

(Flg. 4):
at r l?::‘;)"”}}) 1:{;{14} | - |
H::{-i) at [t +4¢) (¢ +4L) (12.1)
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Boundary conditions (11)
can also be directly applied.

Az previcusly mentioned,

golng over to a numerical
method creates new problems,

‘ ‘ which originate in numerical
i L—-t=h13n‘: aspects, l.e. 1n the close-
) ness of a differential :

i o X approximation or in the
’ preclsion of a computer.

Typical problems are whether

+
|
l
¥
|
l

- - -
mej Fig. 4. One-dimensional HN grid, (1) the solution is nu-
after Hansen (with indexingp. mericaliv .
The right-angled line is the cally.stable, or whether
model's approximation of the (2)

natural bottom profile. the numerical solu-

tion approximates the analyti~
cal one, and if so, how well.

These questions have been dlscussed many times for HN metheds,

and the reader should consult the relevant literature (Silindermann,
Sehmitz [10], Schéferr [111).
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1 These studles are based on the works of Courant Friedrichs
and Lewy [12], and Lax and Richtmyer [13], which give necessary
and sufficient stability ecriteria for systems of linear differen-~
tial equations. There is no complete theory fidr the present
quasi-linear differential equations (6) and (70, but experienced
has shown that the criteria which can be derived for the asso-
ciated systems of linear differential equatlons also work well

in the quasi=linear case. The Courant-Friedrichs-Lewy (CFL)
criterion in the case of (6) is:

| At
At & ——
“ B YZ.?_h: (1351)

and in the case of (7);

4¢
A4t _=c
0 V g4 (13.2)

These conditions are necessary, but not sufficlent for
stability. If (13) is not satisfied, sometimes even with too-
strict approximationy instabillities appear. In many cases (e.g.
in the HN model of the North Sea), however, (13) has proved to be
adequate. In general, one prerequisite 1s the océfurrence of
suffilciently large velocltles and flat sea surfaces, which can
nullify the kinetic energy of the water (and rounding errors as
well) via bottom friction (c¢f. (5)). Experience has taught that
i1f there @€ little motion and great depths, particularly with
steep depth gradients, the numerical method 1s partlcularly vul-
nerable with respect to stability. In this case, it 1s convenient
to introduce an artificial viscosity term, the so-called
a-averagling, which is suffieient for stabllity according to Lax-
Richtmyer {13] (cf. [1]).

I

Nevertheless, this method 1s problematic, since it changes
the system of differential eguations (6) and therefore describes
a new phys8ical situation. IL seems more logical to work from the
outset with a horizontal momentum transfer ApA(u,v) in the sea
(cf. Equations (1)), which, physically, smooths out the motion
processes and is therefore sultable for cancelling out perturba-
tions. Hansen (personal communication) has expressed doubt
abcut the necessity of horizontal momentum transfer for suppressing
energy in the ocean (supported e.g. by the virtually undamped
propagation of longwaves across the entire Pacific demonstrated
by Munk [14]), and considers energy dissipation in shelf regions
to be crucial. However, because of the excessively large grid
spacing, this can only be partially analyzed in many HN modeils.

! Theidentally, the difference approximation (10)} has already under-
gone a smoothing, and this has a stabllizing effect.

11
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The probdeémhhas not been conclusively resclved. However, we
wlll not go into 1t futther here. Later on, when the vertical
dimension is ineluded, new numerical questions will arise. At
that point, the stability problem will be dlscussed in somewhat
more detail.

Desplte the vertically ingtegrated equatlons, the HN method
which has been sketched briefly here has worked well in a large
number of specdi#fic studies on natural marine areas and mathématical\éiﬂ
models (cf. [15]). Lastly, twoffubbthereexamples of the success-
ful application of the method should be mentioned:

- == a tidé calculation for the River Tyne (example A) and

~= & study of tide-induced waves 1in a canal, undertaken
simultaneously with the HN method and a hydraulic model (example B).

Example A

This calculatlon was based on the IfM HN-model of the North
Sea. Fig. 5, which was taken from [15], and which was derived
from investigations éf6Brettschnelder, shows the calculated
tidal curve for the mouth of the River Tyne on the English coast
(selid curve) for the period from October 13-20, 1965. As a
comparison, values calculated with the aid of the classical har=
monic method and other points deri¥ved from the English Admiralty
Tables and from figures of Rossiter are alsoc marked. As a whole,
there is very;:good agreement. This becomes even more important
when it is realized that this tide curve is just a small fractional
result of the associated North Sea model, since tidal water levels
and flows are calculated simultaneously at about 500 other points.

Examgle B

Tides in some simple one-dimensional canals (cloged at one
end, depth h = 15 m) were investigated [16]. Fig. 6 shows the
calculated tidal range as a function of position for four canal
models (16, 50, and 55 km long, and of different forms). For the
two cases of the 55-kmi&longecanal, the corresponding comparison
values, obtained on the basls of measurements in the hgdraulic
model, are also drawn in. The discrepancles lle wlthin the range
of measuring accuracy. Finally, for the case of the 55-km-long
straight canal, a comparison was undertaken at one point between
the calculated and measured vertically averaged tidal flow
velocitles as a function of time. In this case as well, the
gqualltative and quantitative agreement is very good.

12



Tidal Curve at River Tyne ——

—  H.N. Method developed by W. HANSEN

o  Harmonically compuled considering 10 partial tides

77 +  High and low walers predicted by the Ac{miralfy Tide Tables
" o According to JR. ROSSITER.
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tion, the calculated tide curve is drawn in.

3.1.

Comparison between HN caleculation

and measurements in hydraulic model. In addi-

The Foundations of the Three-Dimensional HUN Model

For the time belng, we will base our treatment of the verti-
cal structure of water motions on the Equations (3).
for this is economy of effort, in order to study the fundamental

The reason

15
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questions at the outset in the simplest possible model. It willi
already be possible to recognize the most important problems, and
perhaps to solve them. In this respect, we will already speak of
a three-dimensional model, although the situation will be presumed
to be homogeneous in one horlzontal direction.

Equation (2) will be used for genulnely three-dimensional
processes. -

Tn addition to (3), the k&nematlec boundary condltions em-
ployed in the vertical integration also apply:

R TP 1

: WS‘ @ —— M 1 -a-'_E (14.1)

(14.2)

With the aid of Equation (3.2), pressure gradients are re-
placed by water-level gradients. One can then use either of the
two following systems to analyze the motion in the canal,
depending on whether the vertical component w of the vedoclty is
to be calculated or not:

b

e, %

s A, I Y95 = O (15.1)
L 9% ?

L3 U oox e = 0 (15.2)
| ~b

s 7 )%
253"4"3‘;:*%;;=o (16.1)
0

;EE.L%E’_’{__W (16.2)
) t 2% o6 = 0 .

| )

11 o 2 (16.3)
41 ix T 5w T °

it
ot

These equations are supplemented by the boundary conditlons:
(1) Aydu/szlg = TéX) at the surface (see (5.3)) (17.1)
(2) For the horizontal component of velocity at the

bottom, the following alternatives are
considered:

16



(28) Ay Bu/dzlp = 15°) (see (5.1)) (17.2)

(Eb) U.B =0 . (17-3)

(3) The normal component of the velocity at a fixed
boundary 1s equal to zero {this applles to (17.4)
cosasts and the bottom).

(4) ¢ = go(t) at an open boundary. (17.5)

(5) 85/3x = const. at a closed boundary. (17.6)

Conditions (17.1), (17.4), and (17.5) are standard. Condi-
tion (17.3), i.e. adhesion to the bottom, is common in hydro-
dynamics, and is supported by numerous measurements (cf. e.g.

Van Veen [17]); therefore, in the following investigations, this
assumption is the one usually employed. On the other hand, condi-
tion (17.2) offers a chance to consider a non-zero flow at the

lﬁaﬁﬂ, bottom; its applicability has also been tested. Lastly,; - condi-
tion (17.6) is a way to approximate 37/9x at a boundary; it is
only required if the equations are nonlinear.

The initial state is assumed to be stationary water:
u=w=20; =20,

1t seems logical to use the HN method designed by Hansen
for the numerical treatment of the systems (15) and (16) and to
appropriately generalize the difference method to include the
vertical dimension. Central differences again suggest themselves
. for the spatial differential quotients in the z-direction. IH
approximating Equation (15.2) by finlte expressilons, an integral
must now be numerically approximated.

It 1lkewlse seems logical to start from Hansen's successful /20
arrangement of the calculating points (Figs. 2 and 4) in choosing
a grid match to the system (2) and (15) or (16). These grids are
now consldered to be the uppermost calculating plane or line --
situated at the unperturbed sea level -- of a network expanded to
include the verti¢al dimension. The network is composed of

" (not necessarily equidistant) computing planes or lines at wvarious
depths. In thls case, u-points are always situated directly above
u-points. The newly chosen w-points are located so that the
Equations (16.2) and (16.3) can be approximated as simply as pos-
sible: namely, at the r-points in the uppermost plane, and
vertically below them in lower planes {(ef. Fig. 8).

In contrast to the horizontal grid, varbabilie vspacifigisoawloy:
in the vertlcal directlon must be considered from the very
" beginning. For one thing, avallable computer storage capacilty does

‘1‘.“
oy
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k+l

Fig. 8. x-z grid for the HN

model of a canal with varilable

depth and variable vertical

spacing. The pclygonal boun-

dary gives the model's approx-

_ imation of the natural bottom
profile. The indexing can a

alsd be seen 1in the dlagram.

The symbbls employed are:

$ r- and w-point

©¢ w-polnt

X u~point

not permit more than five or
six computéng planes in
regions of the horizontal ex-
tent of the North Sea (25 x

X 26 grid points withaa spacing

of A% = 37 km).
experience (cf.

Furthermore,
[171) has ta

taught that the statewof motion
in the ocean is often practical~

ly homogeneous overwvrather

great vertical distances, while

on the other hand, substantial
gradients can suddenly appear
within relatively small ‘
spatial intervals (interfaces,
boundary layers). In order to
retain flexibility in adapting
the method to the situation,
varliable spacing has been
ineorporated into the analysis
from the very beginning.
Nevertheless, the first funda-
mental studies are based on
equidistant computing planes.

Fig. 8 shows how the

bottom on the coast is approxi-

mated within thls grid. The
polygonal boundary 1s situated

. so that the boundary conditions
(17.3) and (17.4) can be applied as simply as possible.
studies, the approximation of the bottom is sfill further improved.

In later

In order to simplifyhithe subsequent analysis, without sub-~
- 8stantially restricting its generality, the conditions are first

assumed to be linear.

System (15) is linearized by neglecting

" the water level ¢ #n comparison with the overall depth: f << h.
In place of Equation (15.2), consequently, the relation

0% J

———

L.

EE i ax

f“dl‘ = O

(18)

is employed, because i1t is particularly simple to approximate in

difference form.

The Integral can be evaluated with the ald of

the contlnuity equatlon (16.3) and the boundary condition (17.L).
It is found that system (16) is linearized analogously to (18)
by replacing Equation (16.2) by the relation

i3

{
-
% ot

4]

18

!

i
f
|

withi ot w = w{z=0)

&
4
I

(19)
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The following analyses are based on the system (15.1, 18) or
(16.1, 19, 16.3).

In order to check the effects of this linearizatlion, Equa-
tions (15) and (16) are also used for some of the numerical
examples given In Chapter III. The resulting differences were
always small. Nevertheless, the corresponding difference equa-
tions will be glven separately.

It should also be observed that in numerical meteorology,
the vertical dimension is taken into account in similar fashion
by iIntroducing computing planes above one another. Nevertheless,
because of the different boundary conditions, the situation 1s
quite different in this case; theréfore, the results from one
case cannot be directly applied to the other.

3.2. Canal of Constant Depth with Constant Vertlcal Spacing S /22

In thls case, there are a total of K - h/Az + 1 cemputing
planes; the uppermost computing plane 1s at the undistunbed sea
level, whlle the lowest 1s on the bottom (Fig. 9).

T e -
e k=0 f
[ 1
+—x-F -x-P-x-P-x-P - k=
z FEYe P !
2 X —X= D ~X=0O —A— O —X k=2 o X U
! Cr b T Y
Xy Mo g —X- D =K~ Qe X
§ z ey o 0
XemQ =X~ 0 -X— O ~K~Q—X
[ A |
XeQ X~ QKO —¥— Q=X
[ S N N R I
RSN S N
——x= O =X~ G—x —Jlt-o—-x K=K
— e - e —— — —— . k=K+!
> _‘__J

Fig. 9. X~z grid for HN Pig. 10. Numerical intregraw-
model of a canal wlth tion of uf¢v).

congtant depth using con-

stant spacing Az.

The integral expresslion in (18) is most simply approximated
. by the trapezoidal rule (Fig. 10):

! 0 -

! . K-

b ) U X

[ fu de == At(-—-’-—:-v—-'—i + "‘k)
~ 4

-

x

i 52

ﬁ



S~
N
8}

One then obtains the following differential equations:

(Without calculating w)

| theat) i) A ) ) rt) 2u.d
‘M(m,k) = 1 k) + {u(m le=1)~ 2w fn, k) rth (e, kﬂl) (20.1)
Jt 45}
(C(M+ﬁ-—§(mv
4 for'mul,.,.,M; k = PR '
(t+5) (t- re) K-1 Treeok
Eie) < K 2t de (w“* denins) | S kg | (202)
!t} ) 733 | .{.;‘:-Z:)
M- 1]+ Ult.g, !
| TR )l
t K=2
J for m = 1,0..|M .
(calculating w) .
{t+ at) t) (t) “
A, 4 ) “
u(m,&) s Ul k) £ aaét (u(m le-1) ~ Zu[m t.f)¢ i, kn))
(e A8 (rede %21.1)
(&(mmr}- t(m})
(f"%g (f"%é} ft)for m=1,,..,M; k=1,...,K
E(m) = S(u) ¢ at w{m 1) (21.2)
fDI‘ m = 1,...,“
) it) t) 1)
W, k) o (b, keq) - (21.3)
) et}
-~ nm-1,k) - u(up1,k+1y

,...fqr- mA = _ll‘! ... ,L{; k .= 1

ga-o,K o

Two auxiliary planes k = 0 and k = K + 1 are introduced to
assist in the findte approximation of the boundary conditions
(17.1) and (1%.2). These planes are at a distance Az above the

20



surfacenandubelow the bottom respectively. Then, using (5), we

cbtain
5 “ re) 1) ()
EAV u {w, ai;u(m-"/ . 2 [u(m” U (1m) for all m (22.1)
|
b
; “ “ 1) it)
- e, Ko
! AV M(MQK) s Y = 'rl*4(Mﬂ,M)’14f“*nkJ for all m (22.2)
f

Ar

Instead of (22.2), the condition

|
L

is also reasonable. The remaining boundary conditions in (17)
acqulre the form:

L)
u.(m_xj:a/ for all m (22.3)

i e}
“ w (e k) =0 (22.4)
ﬁ if m designates a fixed boundary
E te)
| W k) =0 (22.4)
i’ #) (t)
| Slm) = &), (22.5)
| 1f m denotes an open boundary
rt} {t) 1874 f(/
S (re)~5(r1-1) S (M)~ E(r-1y
2 ax - 4x - (22.6)

if the canal is closed from the
right and the last internal
Z=-point corresponds to M.

Equation (22.6) is modified appropriately for a model closed

on the left.

o
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4 With regard to these difference equations, the following
points should be noted:

(1) In place of the difference approximation (22.1), one
could also have chosen

it} (¢) t

las 0} - v “ (t)
4, o)-ulm2) [ U (o) | Utimn)

2 4k

[

which, symmetrically, holds exactly for the surface, but does not
use the value d{m,1). Comparison calculations have shown that

the difference between the two forms of the approximatlion is small. /25

(2) Equation (22.2) differs from the expression in (5) in
that the friction force at the bottom 1s assumed %o be proportional
not to the mean flow but to the flow veloclty at the bottom. This
is a better approximation of the natural situation to the extent
that friction at the bottom can actually be directly correlated
only with the flow in the vieclnity of the bottom. Strictly
speaking, the approach used in (5.1) and (5.2) for the case of
vertically integrated equations can be justified physically only
when an entire water column moves uniform3¥yyiina single direction.
The successful application of (5) in numerous HN models indicates
that the vertiléal profiles in Filg. 1lla ecan frequently be used in
the open sea. For tidal currents, this vertical structure has
been established by numerous measurements [17, 18].

! Az P4
?; a
- X, U : > x, U
| =
? ' ufz)
( [:::>> uzufz) '
| G=0
| | -
i SR NN AN/ S AN AN N AN /AN

{ a. b
g
Fig. 11. Schematic vertical préfiles for flow velocity
in motion induced by (a) tides and (b) wind. 1In each
case, u denotes the value of u(z) averaged over the
vertleal direction.
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For wind-induced motions, which can be generated in a relative~
ly thin surface layer, the resulting profiles can take the form
shown in Fig. 11b (c¢f. [191). In these cases, (5) appears dublous, /26
since -~ as shown in Flg. 11b -- the mean flow can be zero (so
that there will be no friction at the bottom in the model), while
the flow near the bottom 1s gquite different from zero, thus
losing energy via bottom friction. This deficiency of an HN
model wlth integrated equations does not greatly affect the results,
but the computing time is substantially increased, since the
steady state is achieved relatively late due to the low bottom
friction.

(3) If, as is frequently done, the zero-motion conditions
(22.3) is used at the bottom, an empi#ical friction term of the
form of (22.2) is no longer necessary. This case can be inter-
preted to mean that the energy loss at the bottom 1s so great
that the velocity is retarded to zero.

(4) The difference approximation (21.1) presumes a constant
vertical exchange coefficient: Ay = const. This makes conditions
homogeneous with respect to internal friction between adjacent
water layers. Thls model still does not contain a boundary layer
near the bottom wlth its important effects on the vertical velocity
profile. Consequently, the calculated vertical profiles of
veloclty do not have the steep gradients near the bottom which may
be considered typical of natural situations. MHowever, this de-
ficiency 1s of a rather technical nature, and is less vital as
far as the immediate question, i.e. whether the HN method can be
generallzed at all in the proposed manner, is concerned. The model
is extended in this direction in Section II.5.

(5) With regard to the computing procedure: first, the

velocity component w is calculated -- from left to right and from
the bottom up -- next the water level [ -~ from left to right =a=d
and then the velocity component u -- from left to right and from

the top down.

If one wishes to forego the linearization performed in (18)
and (19), the HN model will be based on Equations (15.2) and /2
(16.2). For convenience, these are rewritten in the following
forms:

g -
%fwde A %Jnd%.f %(“5 &)

~h b

|

§
This Tew
This replacement is based on the mean value theorem of in-

tegration, and éertainly will involve only minor errors as long:
as |r| << Az. Analogously:
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) | Due o |
R 1(% ¢)- 2xe g

(“ t)*'——/t ~ g
NS‘K(“J‘C)_'

One then obtains for (15 2)

L

s

: 2 3
E-—a—%-—f- 5;[%4&'4- 5‘;(“‘5().:-0
Lo T o (23)
and for (16.2):
, _
| 9% . ?
P~ W, 4 — (‘H—j' t) =
B (24)

Then, for |z| << Az, the following difference eguations are
obtained:

(tr‘f} {t—‘t ‘ o hﬂ - ‘-QJ
Z(""') &( )-— dtdt(-—-(u(w 1}4- t K)) Z N, k)
) t2) w1 g <
...__.(14(144 1, 1)+ ule- 1K}) Zu{w 1, f’)) (25)
¥ ¥ ¥ [t w-%) -9
gt (g0 trwff) )5 )

or:

TR U] (t)

C ) = Clw) + At wr (1)

26)
t/ (- %) 1 E) ) %) u- #\R‘
(u.{fm 1}{ Cltn) + E(wm)}- - "f) G-t e tim}})
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If the condition |z| << Az is viclated, these difference equa~ /28
tions must naturally be modifled. However, for the cases treated
here, Equations (25) and (26) are sufficient.

In the following, the speclal case Ywithout calculating #"

scomltted. w will always be calculated. Naturally, there are no
@ifficulties in applying the method to the first case.

3.3. Canal of Constant Depth with Variable Vertical Spacing

Initlally, the variable vertical spacing is introduced for the
case of a canal model with constant depth. The analysis which
led to the derivation of the differente equations {(20) and (21)
can otherwiSe be appropriately applied.

; . et the numbher of

{ "f_%w computing planes again

; inr4|fn hn+7| be K, so that there

: 8gZ ™ T — = k=0 are K - 1 (in general

f Z¢_x_?_x ®-x-@-x- - k=t different)} grid inter-

?za LSS0 S *ﬁ_f_; =2 vals yz (between the

i planes k and k + L).

| AZZ Again, there are sup=np

‘ ?“7—9"7" ~X- 0%~ 0~ | plementary planes for
o—x—omx—$-x~ X g —k ! k = 0 at a distance

[ PP N S 0 . S S ) ; 8452 = Ajz above the

i l [ 1] l T | ’ i undisturbedssurface,

’ ciami—cla-T—c')~:if— —)-'c—?-af and for k = K + 1. at

| O—x~0—x— ‘*‘i‘““?“* a distance Agz =

i A ‘2*““9‘*‘3 %_o_i_g_i k=K-1 = Ar - 12 below the

’ A:é :{:q:f:p-x-é— -0~ k=K bottom %Fig. 12).

| — o k=K The difference equa-

t — X tions analogous to

(21} are now:

Fig. 12. x-z grid for the HN model
of a canal with constant depth using
varliable spacing Apz.

| (erst) t¢) o W
1 24, 4t 1t}
W k) = bt
(k) = u( k)« dbé+mﬁ(4 3 (vl bea ) - ”(”’LU
1) ) 1 @) (o7
_,,_____(14_(:-_, f{) 1¢ { tar, fcf?)}) ? {é(d,ﬂ) ;‘{m}) (27.1)
ety ,f-:g;r f+,’ (27.2) /29

!;‘__w\gfb"') = C L) £ AL w (e, 1)
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) )

| W W W 2%
: wm k) o arfue, kie) - (2%.3)

ref
4t
Tj;(”(“f,i') + ‘h{w,!ﬁd} ~ -1, {;j.. tt fa-2, fc”})

T

Among the boundary conditions (22), only the relations (22.1)
and (22.2) must be reformulated:

W i), " te
Ay MIW'D{’"&“{M' 4) - A IU(""‘)IU(W} (28.1)
ft)
| ‘Mf:.)m’ K}-— H[w,kn} it} ff’)
Ay dgg ¥ = f-’1‘[”'k)’°t(”'K) (28.2)

3.4. Canal of Variable Depth with Variable Vertical Spacing

Since the HN models are designed with a view toward practical
applications, and since the crucial role of hottom topography is
known precisely in shelf waters, a variable depth distribution
must sooner cr later be incorpcorated into the models. This can
be done in three ways (cf. Fig. 13):

T ' o N (1) Fixed spacing and
# @t @-%- D4 D -4 D-x-@-< guantized depth increments of
KAz (K = 1, 2, ...).

. {2) Variable spacing Apz
and quantized depth increments

<
i (ky, ko being two
T grid planes.
Fig. 13. Approximations of ‘
different accuracy to natu- A (g) V%z%?blg,giéd spacing
ral depth profile in the HN ikzrag nzarl e dep
model, depending on whether nerements .
theddépth 1ncrements are
(1) constant (solid line), Method (1) would be the
(2) variable (but with three~dimensional generalization Lig‘
quahtized steps: broken of the two-dimenslional HN method;
iine) or (3) vériable in it too, the coast 1s generally
(with’arbitrary steps; approximated within a fixed grid.
dotted line). ? Because of the relatively low

number of numerically practical

vertical computing pranes (com-

pputer capacity), method (1) 1s unsuitable for approximating real
depth distributions. Method (2) 1s better only in special cases.
Only with method (3} can natural situations be relatively closely
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approximated. Therefore, the difference equations were deflved
for that method; 1t contalns methods (1) and (2) as special
cases.

Pirst, a system of vertical
: e ~grid separations 1s chosen.
|[ m-1 | m | m’% { HOWEV?P, thig holds for i Pord
U VRPN R specific grid point on the hori-
7 °‘rx MY B zontal 1ine P(m) only until
Arz the bottom 1s reached. The
i_ lowest plane 1s always the bottom
—L Kol G e itself, even when there are
~X—0 X g XL & 8till more planes in the system
B¢ X—o—f | (Agz) (ef. Fig. 14). Changes
f—'o_‘f - el in the system (27), which applies
B 7 X—0—X to models with constant depth,
| | ke2 occur in the motion equatlon
- (27.1) and in particular in
- the continuity equation (27.3).

Fig. 14. x-z grid with v
variable spacing Ayxz and ar-

bitrary depth lncrements. In the equation of motion,

this is done whenever, for water
less than I Ayxz deep, fewer than
K equations are. fto be considered,
and the boundary conditions at the bottom must be applied to a
plane k < K. In the continuity equation, it must be kept in

mind that the voIume elements of the grid now have different
boundaries. If the height of the laterally open boundary of the
lattice element (m,k=1/k) in Fig. 14 is denoted by Az on the

left and Apz on the right, the continuity equation now reads:

w . I ﬂJ"" o
wln, k) = ’b\r('w!,kg-'?)-.Z—};({M(m,k)f.u{m,k+1”,arf
{29)
ft} tt) w
~{rfm-1, k] + -m(huv,kn}}dct)_
3.5. Basin of Constant Depth with Constaht Vertlcal Spacing /31

The starting point is now the system (2) of equations. 1If,
by analogy with the canal analysls, one wishes to calculate the
water level [ instead of the pressure p, it 1s convenient to em-
ploy the followlng linearized system:

" - -’éa“--...,.", .“:9. -
Z-"—-fv.. "ﬁ”?‘;‘g:" (30.1)



Jv o ok
N -t fu - A, Tt q 3y ’- 0 (30.2)
| % -0 (30.3)
1 at
i i v dur _
% 3% + -3-; + -5;- = (30‘4)

They are supplemented by the appropriately generalized
boundary conditlons (17).

b il m-1 | m I m+f —\
J’x—-_;(‘B /X ,(@ /‘x /&) /X k=1
R X T
x| | x k=2
| il
-
0 ——X——0——X x
//
l X
% A
o 0 ——X X
l | x1
I . L~
t ¥— 0 X o X o x~ X k=K-1
i | x7]
53 % o X o) pie o x"/ x k=K
] | 7
| 77
[ 77 Qe X7 A0SR SR Y77 AR

Fig. 15. Three-dimefiskonal coordinate grld system for
the HN model of a basin with constant depth and
constant grid spacing. The following symbols are
employed: & ¢g- and w-point

o W-polnt

X u-point

+  v=point

The structure of the grid matched to the system (30) is now
derived by combining the horizontal and vertical networks shown
in Fig. 2 and 8 (cf. Fig. 15). The difference equations asso-
ciated with the system (30):nows read:
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z (t+4t) (4] | H
l M(M,‘M,k)a u(u,m'k)‘{- fdt‘;‘(mrm,kj

4 /) 18 (&)
) + ; (u(Mm &-1) 21 fm, v l¢){,m(,.,,,,,, k) (31.1)
f‘ - X (s 4E) (e + 4L)
' —-9%(2:(%%1}‘- g (v,))
(t+ At) 1t /t)
V{w,lm,!c_);-_— v [ o, tan, k)—fdtﬁ(h,m,k)
(31.2)
t¢) 1t it}
Ay At(u‘(hm ke-t]— 2ur(inun, k) 4 w0 o, 1<+4I)
H‘*‘dt) (e dt}
~ g __(g(h pa) = (011, m))
(¢ +% (e - 4t} ) .
§(n,m) lg(ww:) + At wn, w, 1) (31.3)
(t) {¢) A ('t} i)
w(h,m,l{) = 45w, o, l{+1) ~ 77 (’M(h wr k) 4, on, ko) (31.4)
1) (¢ 1¢)
- v, -1, f() -, -1, t(i—;) -rr(u-‘r m,k]
(£} {7
+ v {1, we [cn)-— ol (2R PS k) V(mm k+1))
with '
= {t) . (%) & (¢ (t) o
‘LL(!A, wr,!{)::- K(M(M,m-—‘!, k)f @L{M,m,,{}..tﬂ(ﬂ-}f'w-i’k)+M(M{_1' -, k}}
| ) (t) (1) () (t)

S

("‘ - !‘J (V(“-’.% k)+ v (u-tmeq k)b vinm k) +v (0, et k).

The boundary conditions areasapproximated by analogy with (22):
”!&] o ft}“
A U [, ter, o) M { b, 1a, 1) e} 2 ()

Az = ’{)/U(htu} thn«) U(”Wf}

‘- U‘{'AWO} v‘(w tr, 1) 1) o ARG
Au_‘ = ’l}/U(ln m) V{M Wa} V(m :4,‘J

(32.1)
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Y (¢}

‘ ta - v, 007, e =T z /t)
AV win, ‘K)d;df kel - T}/M;g,““,z’/f ‘U"E"{“". K} M{h’M,KJ
o K) O e g 7 B T R 1) (32.2) /33
A_u ‘U'_( . 1, d&y‘( 4 ‘ - r%;{&'lm'x).}v((a'th'k) "U—(lﬂ,‘?', KJ
or
) tﬂ.r )
u(o,m,K) = v(n,m,K) = 0 (32.3)
(4 (t) _if (n,m,k) (3.24)
u(n,m,k) = 0, v{(n,m,k} = 0, is sltuated on a fixed
: boundary i
(t)
w(n,m,K) = 0 B (32:24)
3 /
i) 1t} -
 C(a,m) = C”(“'M}J (32.5)
, A o if (n,m) is situated on an open

boundary.

The three-dimensional equations can be generalized fubther,
but this will not be done here.

4, Explicit and Implicit Difference Methods. Niumerical Stability

4.1. Numerical Stability of Explicit Method with Constant
Vertical Spacing

The difference equations 1ncludlng the vertical dimension
have been formulated so far without taking the numerical stabillty
of this approximation method intoe account. Initially, only the
criterion (13) -- the CFL condition -~ which regulates the
relationship between thettime increment and the horizontal dis-
tance increment, is known.

However, one would not anticlpate that once the gquantities
At and AX have been established, the vertlcal distance increment
can be chosen arbifrarily. Instead, there will lilkely be a
conditlon analogous to eriterion (13). This will now be derived
by means of an eigenvalue analysis, followed by a general /34
discussicon of stablllity on the basis of results found in the -
literature.

The starting point 1s the difference equation (20.1) with the
boundary conditions (22.1) and (22.2); it will be found that the
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speclal cholce of boundary condition %s not parti&;%ir%%esignlflcant
fgr numerical stability, within certain limits.

gﬁmbols
¢ ((_-}
LUy s U (e k)
ﬁ ‘ (ks at)
: U = M(Mrk)
A A, ot
B a*e (t+45) fe+45)
te} i) at A
by = A U Utm) = 5 3 [ (nesr) = E ()
at 2+ 4E) el
Q¢ )
bz = és;...={,K-.-. - H{t(:«u} t(m})
' )
b = f:-z T fulw, k})

we obtain the sysfem of equations

Cut o (1
uy = (1 ﬂ)ul + auy + b

!o= -
Uy = au, + (1 2a)u2 + aug + b,

- — - -— - - - - - -

ul—'c = auk—l + (I-Qa)uk + an + b

k+1

- - - - o . - - - -

l = F
uK‘-l = BuK-2 + (1 QE)HH-I + auK +

=
H

k7 sy ¢ (masblug

or, 1n matrix form,. .
: '

(7 = Ou + 4 (33)



In this case, u' is (ui, . u&&§ﬂ@xpressed as a column /35

vector, u is the column vector (uj,..., ugl), and b = (by,...,bg)
is the column vector of inhomogenelties, i.e. the terms which do
not contain the velocity u. Lastly,ﬁaj is the amplififédtion
matrix as defined by Richtmyer [20], which characterizes the
speéial diffierence method.

For the concrete cases discussed hereé a and b havetithe
following orders of %agnitude (Ay = 103 cm /sec,AAt = 102 gec,
Az = 103 em, r = 1073, fuf = 10 em/sec):

; ‘ ' 3 3 '

. [aJ A, At 10 10 4 -1

| - At - 4o ¢ -

i + 2075 10 10" 3

! . _A__ = * . - -
‘["’J‘[Mr’u{] "o 3 1o ;

j.e. bu€< a. Therefore, in the following stabillty analysis,
friction is ignored. Then tHe amplification matrix is

P e

!' i-a =a
L a 1-2a a )
a 1=2a =a :

Ol . '

0 .

a 1-28 =&

Here, K gives the number of rows and columns in the square
matrix (@, . If (33) 1s viewed as an initlal-value problem, the

necessary criterion for stabilify of the infteration process gx-
pressed by (33) 1s the von Neumann condi?i?n, according to which
the absolute values of the elgenvalues Aik of O must be bounded

(ef. {20]):

i :mi R : _ N
: J,h I = 1 + O(A t,) (i = liooevK)w (3’4)

I3
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j_,v\"\'eg_ C&%@‘P\ML

for 0 < At < T and all grid points within the region; the function
O(At) denotes that the leftover term is at most a linear function
of the time step. _

In the case where the elements of O are bounded, (34) /36
can be sharpened to actually provide a sufficient condltion for

stability (ef. [20]):

1A = 1+ o (at)

i .(a) . 4 (£=2,.-,K~) (35)
|

This criterion is only applicable when a is bounded, 1l.e.
in case the time step does not become arbitrarily large and the
vertical distance step not arbitrarily small. Just this restrle-
tion shows that the spacing cannot be chosen arbitrarily in the

explicit method.

In principle, the eigenvalues of the amplificatlion matrix can
be calculated in different ways. For lnstance, the simple makeup
of the matrilix permits an analytic solutlon of the system (33)
in the form of a Fourier series, in which the elgenvalues are

found directly.

However, this route will not be taken here, since 1t does
not appear to be generalizable for the case of a more complicated
structure of this matrix. To calculate the eigenvalues of the
amplification matrix, we start from its characteristic equation:

% S N U
: 1-0 - A A

‘ e)
'Dkﬂjak—lélz (36)

0
& 4-2a-4 a
& 1-a-A 1w .

T Claim: ﬂhe values Dy are related by the recursion formula

o IS
g P, = (1—zan~1) dian = 4 Ju-z

(37}
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Froof:

By adding the first column to the second in (36), we obtain

; 1—-aq - A
a

1-4
1-a - A
&

—1

ik

|
| »

i
[
|
l

Then, expanding along the flrst row yleldsr:

|

Iy= (1-a-2) Dy = (1-2)

2}
0
1_1(4}— /1
A 1-24-4 a
a. - -
] A-a-4 3
a a
1-¢an-A a o
O -
oL A-2a -4 Q.
& A=t A

~

k-1

The determinants on the right side differ only in the first column,

and consequently can be added easily:

——

i

‘?k = (1‘3,51“/1)-Pk-1 1T

z
-a a

ot 1-2a-4 &

.
-

O 4-ta-4 4

@  a-q-4]

Byyadding the first row to the second, and then expanding along the
first column, we obtain (37).

Now, by repeated application of the recursion formula (37),
the number of rows of the determinants on the right side can be
reduced one by one:
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$ 2
(4"3-0'-3) Py — & Jx-2
= (1-2a- a){(""l“‘ "A)‘p.z 2 —a?_.)k-;} - ﬂLJ)k~)__
=[(4 -24- r{)-‘ﬁ]\?kl—-(‘f—-lq A)a D~

o
i

and so forth.

Claim: The (D} satlsfy the recursion formula..

| [%J -2-', Zv
;mk = x qu:(i) (? V) (1 ~2a- A) a

[Lj g-2v-1 z,(v+1)
-?12(1} (""v1)(1 24 ~ 1) a

~ for g < k.
As usual, [x] denotes the largest iInteger less than or equal to x.

Proof: (by complete induction on qu

(1) Let @ = 1. Then
2

P - /. (1;'3-"'"3-) - i 4

in agreement with (37).

(2} For the induction, we now assume that (38) is correct.
Then we must show:
| e | qer-av
= o 2 (N 2an)

, ﬁp‘vao
i

i ["] 9—2"' z,(wn}

B e M LRI

*‘, R V=0 o

By (37): i ) e e

—

lg—a'-yk_q__{ = Dy - {1—za-a).h_7,.,/
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Substituting this above, we obtain S

[ ‘ [L, lji-t"?-l’ 2w
e e B )
Iil [5!.] ~ qrt-lvz_v
e e () e )

g U’O] q_lv&v

+ Pk -q Zq (-1) (9;”)(4-lq—4) a

In the second sum, the upper limit of the sum can also he written
(g + 1)/2], since the binomiald&coefficient vanishes for v > g/2.
Then, the two upper sums can be combined:

- 9. 1Zf Al (e

[11 q-2v | (39)

ey L) neea) e

V=0

The difference between the binomial coefficients in the first sum
can be calculated as follows

) () o Lt
! - vilgetr-2v)! v{(g-2v}!
l _ {(a-v)! v (9-v)! ) ( 7—~v)

{1 T vi(ger —2v)! T (v-1) (9 -zeer)t v -1

This binomial coefficient vanishes for v = 0; consequently the
lower limits of the sum in the first term of (39) can be raised
by one:
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C (s qr1-2v
‘ D = Du-g-1 Z(-” (3::)(1 -2a-1) : "
‘ ‘E;;] ' .q-?.v
e du ) () -da-2)

2.

v

| v=o |

If, in the first sum, the index is modified by replacing v by
v - 1, the result is formula (38), which was presumed to be
correct.

If g = ¥ - 2 is substituted in (38), the determinants D1 and
D2 appear on the right, and they can be calculated very easlly
by going back to the definition of Dy in (36):

Formula (38) finally yields

[ O kiitaw

YD S G IRR S

v=0

Using thils formula, the characteristic equation of the amplificaw
tion matrix Dy = O can be formulated for an arbitrary number kfof
computing planes in the vertical direction, so that the elgenvalues
can then be calculated.

Equation (40) implies that one of the elgenvalues is always
A1 = 1, which satisfies the first part of Condition (35).

The first slx egquatlons and their solutions are:
————

k=1": 1~-4 = o0
4, = 1

k=2 {1-1)(1—2&-—&);0
1, - 1
A, = 1~2a
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38

| :11 1
‘ 2, = 1-a

Ay = 1

l, = 1-2a

1; = 1- (2"'[?/(‘1
Ay = 1- (241 ]a

N

‘ k=5 (?_.)1)[(1,10‘&/])4_‘ 3(1__30(-,1,‘0‘-’—4. Q‘f] = ¢
Ay =1
), =g A
2 z. a
1 S+ 15
31T a
3~
'eq =1~ Z_{E a
; 3¢ {5
/ /ls-=1- 16- a
5
k=62 (1-4)[(1- Lq—al)—q('t—aq-fl)fxﬂ_;(waa-,a)a“] =0
Ay =1
j ,12-: 1-2a
f Ay = 1=
i Ay = 1= 3a
] l‘r = 1'—(.2..1';?-}&

A, = 1-(2-15)a

It can be seen thet' at least for k < 6,
can be represented as follows

_— T
’{7 = - \
(&t] “‘}
[ Al = 1 - OC; a

k=3:” 4.H[U—La—l)—a J==O

(1—@)ﬁ1—£a~1)3~.1(4—l4~4)ﬁ1]

Lo
“oCl >0 (i=2“'”k)

= 0

the eigenvalues of

(41)

—_—

™~
I=
'.._I

|



‘This calculation of the eilgenvalues for models with up to six
computing planes will sufflce In this case, since more extenslve
analyses are not planned for the time being, because of the
limits set by computer capacity. Moreover, it is not at all ob-
vious that the eigenvalues up through k = 6 can be given ex-
pllcitly. For k = 7, this i1s no longer possible even in this
case; one would then have to resort to approximations.

From the sufficient condition (35) for the stabllity of the
method, késtrictions can now be deirived on the magnitude of a,
and thus on the relationshlp between the time step and the verti-
cal distance step. Presumably, At will already have been
determined in accordance with (13), following the choilce of a

sultable horizontal distance ilncrement Ax. Then, (41) and (35) ey
yield

| oty

J1-«;a} £ ¢Cc <1

Since aék) > 0, that results in the requirement
L) .
:{cﬂ; O £ ¢ o< 2

and with a = AvAt/Agz, the desired sufficient stability criterion
is obftained ,

A2 . («)
CAmzens fa, At ! (42)

Hence, the larger the time stép and the greater the vertical mo-
mentum transfer, the greater the vertical distance increment
should be. In contrast to the CFL criterion (13), according to
which the time step and the horizontal distance increment are
linearly related, the relationship in this case i1s gquadratic:
halving the vertical distance step means dividing the time step
by four, in case Az and At are éhosen so that (42) is just
satisfied.

Examples:

(A) We will consider motlon in a canal with water h = 50 m
deep. Let the horizontal distance step be Ax = 8000 m. To what
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restrictions are the time step and whs vertiéal distance step sub-
Ject in a six-plane model (A; = 0.1 m“/sec)?

According to (13);

e

i {e = 4
' Tk R R

| At = Ax fooo

For instance, if. At

= 300 sec, (13) will certainly be satia-
fied. The maximum o for k =

6 1s then found for 1 = 5, with

Hence
and "; Al‘ g '? ‘:‘P te+1

Hence, the minimum grid spacing sufficient for numerical sta-
bility is in this case greater than 7.48 m. Therefore,
Az = 50/(6 - 1) = 10 m resulting from equidistant separation is
acceptable. We will return to this example 1n Chapter III.

(B) We again conslder the canal in Example (A). Suppose
that the time step At has not been establishinguuging (13), but
will be determined by (42) after the choice of Az. What restric-
tions would then apply to At for a 2-, 3-, ..., b=plane model?

The answers are contained in Table 1.

To apply criterion (42), it is enough to know the maximum
Fiite &ég; of the set {uik)}; except for the case A = 1, this
value corresponds to the eigenvalue of greatest magnitude
(Alégi of the amplification matrix. It is not necessary to know
the other eigenvalueslkék),

This railses the question of whether atatements can be made

(k)
about |A]

max
linear factors -—- a process which will obviously give rise to

even without breaking down the polynomial (40) into

4o
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TABLE 1. VERTICAL SPACING AND MAXIMUM PERMISSIBLE TIME STEP
IN AN EQUIDISTANT k-FPLANE MODEL

k Az [nm] At < [sec]
é 2 50 25000
\ 3 25 4167
S 16.7 1636
f 5 12,5 863
L%ﬁé 10 536

considevable difficulties in the general case for k > 6.

If the eigenvalues of greatest magnitude are plotted on a
graph for the six known cases k = 1,.1L1lk = 6, the resulting
patbstn gogpests emalb (k)
ﬁ + o (c¢f. Fig. 16). As indicated by the diagram, this limit
appears to be

converges to a 1limit A, > 0 as

b Avaax = lim | A)

k->oo anlx 1~ (I"CL

~
=
I

Thils suggests the criterion

|

—————

A% | |
7 M"‘“_J (43)

for the general case of a k-~plane model. This conjecture has been
confirmed by analyses of Richtmyer (see [201, p. 17).

The existence of a universal stabllity criterion for models
with arbitrarily many vertical computing planes i&sof great im-
portance, since it eliminates the necessity of working with the
characteristic equation (40) for each model, which can be diffi-
cult in particular cases. Nevertheless, the condition({i43) —-
as Fig. 16 shows —- 1s necessary only for the limiting case k -+ o
and can be replaced by less Pestrictive condilitions for models
with relatively few computing planes. Therefore, in these cases,
(e.g. for k < 6), the above "individual" stability criteria are

preferabiés.
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C 4.2, Numerical Sta- /45
" bility of Ex-
" plielt Method
"with Variable
Vertical Spacing

30 far, the
analyses of numericil
stabllity have pre=
sumed constant verti-
cal spacing. Adherence
to criterion (42) will
be assured even in the
case of wvarlable
spacing whenever the
smallest value ApinZz
satlsfies this con-
dition.

IT~3a1t

I-4a1

Fig. 16. The maximum elgenvalue of the We hypothesize
amplification matrix as a function of that this condition
the number of vertlical computing planes. is also necessary.
The broken line is the approximation We will not give
curve, the proof for the case
of a general k-plane
model; instead, the
sdtlatdn will be illustrated by an example for k = 3. In this
case, the difference equatlons for u are:

| ————

o Ayl
| Mt (egp)
f Alz
9 QAVA{'.
! i 1 1
; uy = u, + 5 (A z(u1 u,) - 5;;(u2-u3))
; Avﬁt
| wy=ug s A2 (uy-uy
I 25
with |

@ h = A2+ A2

The elgenvalues of the associated amplification matrix ared
S : S e
| A 1 = i '
| : t ‘

! ! v 2 '

Aoz l= g (n” 2 1/h’* - 1287ale )

: ’ 2&12 o Z




From the requirement inL < 1, we obtaln the condition

‘ ﬂ 622‘:, AVAt l/ QAVﬂt l (44.1)

For Ajz = Apz = Az = h/2, (4U4.1) leads to criterion (U42) for the
case kK = 3:

A

8% >3 Avﬂtk (44.2)

Assuming that in the equidistant case, the time step had been.
chosen so that this criterion, and thus (44.1), were satisfied:

' 2
{'AEZ>AVA1; S 3 L.

Then any deviation from the equidistant configuration would act
to the detriment of the 1nequallty in (44.1). Namely, let

Az-&

B> >
m 1]
" N

| 1

= Az + € (¢ > 0)

According to (44.1), the following inequality must be satisfied:

; - el _
‘ A%z - (ﬁz—E)(Az+£) = zﬂzz > AvAt-1/ 2- = C

However, (44.3) only says that

i

i

4522 > C \

Hence, for € # 0, (44.1) 1s not in general satisfied, if the time

step At of the equidistant case (the spacing for which is obtained

via the arithmetic mean: Az = (Ajz + Aoz)/2) 1s to be retailned.

h3

™~
=
o



If, on the other hand ' At in (44.2) 418 chosen so that
; 2 A2 a2 L3
: Aminz_r'rAlzr :“A z > 5 At \
then (44.1) is always satisfied:

I
b

? Alzﬂzz =Az(Az + 2€) --.4322 + 2¢84z > C ;

since, according to (44.3}, 1t 1s already true that Agz > C.

~

4.3. An Implicit Difference Method

The stability criterion (42) constiltutes a major restriction
in HN models for calculating the three-dimensional structure of
motlon processes. This may be illustrated by Example A on p.3339.
With a desired spacing of Ax = 8 km, it was found that the very
reasonable time step of At = 5 min was allowed by the CFL condi-
tien. Then, by applying criterion (42), 1t was found that the
vertical spacing had to satisfy

Az > T7.48 m.

If the water motion 1s subJect to large variations in the vertical
directior fe.g. near the bottom), such a large spacing must be
viewed as far too big. Simulating, e.g. Boundary layvers in the

HN model makes it desirable that the distance steps Az here be

in the decimeter or even in the centimeter range. However, even
with water several meters deep, the necessary restriction to a
small number of computing planes means that such spacing can no

1 onger be achieved 1in the expliclt HN method discussed so far, for
reasons of numekical stabllity. This makes 1t necessary to design
a numerical method which gets liberated from criterion (42) and
which guarantees numerical stabllity for an arbitrary cholce of
the vertical distance step Az.

This 1s now accomplished by goilng over tona partially dmpllcit
method, one proposed by W. Hansen, and used for the first time
wilth great success for the vertical dimension in the present
investligatlons.

The new method retains the explicit HN method for the horizon-

tal dimension, since the necessary stability condition (13) has
not proved to be a major restriction for the models condgidered here.

by



To calculate the vertical velocity profiles, on the other hand, an
Impliclt procedure is induced by a new approximatlion of the
vertical exchange term in the difference eguations. WTo calculate
the velocitles In k vertical computing planes, this implicit
method requires the selution of a k-dimensional system of equas
tlons for each grid point in the horizontal plane.

The new method wlll now be 1llustrated for the previous case
in 3.2 (canal of constant depth with constant vertical spacing)
and studled in more detail. Using Equations (16.1} ,19, 16.3) as
starting points, theoly equation which will differ from those
glven in systems (20) and (21) 18 the equation of motion, inasmuch
as the exchange term is approximated In a new way:

| !39_“ oo W )
(explicit) ‘f 5;5 t:g aaz{u(m.k-i)-2u(m,k)+u(m,k+1))

i 2 (t) (t) te)
(implicit) f Ava—g ~ Ag (u(m, k-1)~2u(m,k)+u(m, k+1)

! dx 2/%z

1 t {trdt) (trat)  (t+4E)

b + u{m, k-1)-2u{m, k)+u(m,ke1))

A time average of the values from two successive computing
planes is used for the exchange term. in Richtmyer [20] or
Forsythe-Wasow [21], one finds that such a procedure compels the
method to be stable in many cases. Later on, this will be shown
for a special case in our situation as well.

The implicit form analogous to the explicit difference equa-
tion (20.1) is now:

.-,}tlét} ALAt  {trar) (Erat) {r+At)
u(m, k) - 5 (u(m,k~1) - 2u(m,k) + u(m,k+1))
207z
) ¢ t) (t)
= u(m, k) + —5—(u(m,k-1) - 2u(m, k) + u(m,k+1)) (45.1)
. 29;2 (e 4, T
(&%) er
- %(Zf(ml) - &{(m)) for'm = 1,...,M; k = 1,...,K,

How can (45.1) be solved 1n practice? We introduce the fol-
lewing abbreviations:

45
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| (t +Ac)

u& = u(m,k)
(¢]
uk = u(m,k)
AyAt
a = 5
Aoz (erty
7 = 4t

g5 (G (1) - Z(m))

(tr &

Furthermore, we assume, without loss of generality, that the
shear stresses at the surface and at the bottom can be neglected.
Then, the followlng system of equations 1s obtained

In these equations, bi,..
of the system (45.1):

I\D:['P '

-

e
| = (128 a
[.b1 (1-3)ay + 2w,
' a
\ b, = 3 Uy 4 (I»a)u2
d ar-
by = K2 * (l-a)uK
b - & a
| K 2%k.1 * (1"2)“K

1
= b?,
o
L (85.2)
+ (1+a)ul'{_1 w%uk =-$£;i'
'%“ﬁ-1 + (145)ug = by

The system (45.2))can be solved simply by the Gaussian al~
One begins wilth the last equation and derivés a
relation between two successive unknowns at each step.

gorithm.

at the top,.one flnally obtains two equations for gi and uﬁ.

46
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!
them, u; and ul can be determined, then ué and finally all other
ux. We will now glve the appropriate recursion feormulas.

In general

+d foﬂr‘k:zganetK' (}'l6 1)

~
[aw]

In this equation - - ' " L2~

i‘I' ¢ (1 —)-1
|

K~ 2

= 2(1+a-(3)% (18!

and - (1+§)'1b

K

= (1+a-(3)% (1)) (b +B(142) M0y )

- - - - — an - -

b-

Summarlzing, we-dbfain ﬂbfrfﬂé_ébéfficiénté:

-1
ck= 2(1+a2k1) fO,I' .3k=2|---’K (1.16_2)
Crei = 1
q = ¢ (Ebk+dk+1 for k¥ - 2,...,K (46.3)
d = 0

K+1

-2 It is always assumed that the determinant of the system (45.2) &
is not equal. to zero.
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v L<—»2),._) K,

For k =2, (46.1) and the first equation in (45.2) yield
the system of equations

t
- c2 u1 + u2 = d2
al
(1 + 2) u; -5 uy = by
and hence
a
v g thy
T 1 +2 .28,
2 2 "2

t
Now, successive u2,...,uﬁ can be calculated by (46.1) from
top to bottom.

For the case 3.3 (canal of constant depth with variable
vertical spacing), the corresponding result is

l R .- A bt

| 1 ]
fuy, = e u +d {a, = ——— )
| k T “k"k-1"% kT Ay _ 7B,z
‘ a ¢
k 1 1 keli=1
‘“ TA z(1+ak(A z T A 2t A z) ¢ Cge = 1
k-1 k=1 k k (47)

d =c (Ak”lzb +Ak'lzd ) ;4 =0
L k k ay k 4,72 k+1/ ' "K4l

for kK = 2,...,K.

h,4., Numerical Stability of the Implicit Method

No exhaustlve stabllity analysis has yet been performed for
the combined explicit/implicit method employed here (explicit
horizontally, implicit vertically). On the other hand, numerous
works have dealt separately with the stablliity of the explicit
HN method (cfl. [5, 3, 11]), and the stabllity of this implicit
method (cf. {20, 21]).

For now, the maln objects of interest are the propertiés of
thef#implicit method characterlzed by (U5). This method can be
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asslgned to the general class of implicit dlfference methods
characterized by the system of equations

(kea)  (e) ft"“} 2 (%
u = 1 ‘82 + (1 "'3)(J “)k
-k k =€
A.,t A Qz,m,.
with ¢ = const = 0, 0 < 8 < 1,
an T L
and \ e {t) (t) (t) ()
0%y = vy - Uit Uke1

(cf. Richtmyer [20], p. 16). For 6 = 0, this yields the original /52
expliclt system while & > 0 gives an implicit method. The degree

of stability of the system (45) depends on the cholece of 8.

Accordilng to Richtmyer, the criterion is

2680t .~ 1

1 2 = 120 * iIf 0 <8 < 1/2
8% - (48)
No #estriction, ir 1/2 <8 < 1.

The case which will be used here, namely 6 = 1/2, which was
studied for the first time by Crank and Nicolson [22] ,according to
Forsythe and Wasow, and which has a particula®ly small approxima-
tion error, therefore results in a stable solution for any choice
of Az. For 6 = 0, observe that (48) yields the criterion (43).

Critérion (48) is valid only when the system has constant
coefficients -- as in (45). Moreover, the boundary conditlons must
have a relatively simplée form: they must be linear and homo-
geneous. Since, if the shear stress at the bottom is negligible
(1t was shown on p. 32 that this assumption is justified for the
models discussed here), this requirement 1s satisfied for each
of the boundary conditions (22.2) and (22.3), the special choice
of the boundary conditions does not matter here as far as numeri-
cal stabllity is concerned.

In applylng the comblned explicit/implicilt method, consequent-
1y, only the CSL condition (13) for the horizontal distance
Increment need be satisfied; there are no kestrictlions at all on
the vertical distance increment. Numerical practice has shown that

K bg



the high stability of the Ilmplicit methed used 1n the vertical
direction obviously overflows into the horirzontal direction as
well: even if the CFL criterion is violated by a small amount,
the sclution remains stable.

AN
We will now prove, for the example gjof a simple, three-plédne
model,t.that the implicit procedure just described is uncondition-
ally stable. In accordance with (45.2), the fundamental
homogeneous system of equations 1s:

(1eguj - Gug = (13w« 4w,
Tt (eedup - feg - 5ug + (t-a)u, + 2% | (49)
T g ¢ (1) - Sup + (1B,
or in matrix form Ce e
[ 145 -3 0 1-3 5 0
| —% l+a --3- = % l1=-a 92—
o 2 0 2 18

[sic]
If the matrix on the left 1s denoted by (R [slc], and the matrix
on the right by ¢g( , the matrix equation can be rewritten

?¢1}¢' == livt\

and the vector u' must be determined from this equation. This
is simple to do formally:

The matrix % = o 0 is the amplification matrix of the im—
plicit system of equations (49). It is found to be
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2

a8 a
3 a
143 2(145)(142a) |
a
1-3 .
1+§a 1+%a
o2
a 1+a-,-‘-

The characteristic roots of ¥ are:

A, = 1

/54
a
A L2
L=

14 %

1—25. :

Ay = 2 1
J 3
} 1+§a

since a > 0, 1t follows that the elgenvalues Xy always
gsatisfy the condition

: ’/\.1! =1 , ’A:l < 1 (i“~=2g3) \

for an arbitrary positive a. Howevery this means that the method
is stable no matter how the vertlcal spacing is chosen.

Incidentally, one could have obtained a weaker result: by
not calculating the eigenvalues directly, but instead estimating
them by the well-known Theorem of Frobenius (see e.g. [23]).
According to this theorem, for a matrix (biy):

——

[ 4
Al = max Z by
1 kay
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In the present case, all three rows satlsfy

‘ 3 ' 3.2
¢ 1 + 2a + Ka .
; = = =

k=1

However, thls shows only that the necessary criterion (34) is
satisfied.

5. Simulation of a Boundary Layer Near the Bottom in the HN Model

While suitable boundary conditions for lateral boundaries on
the surface can easlly be formulated to conform to natural
situations, things are much mere complicated at the bottom.
However, the situation near the bottom plays a c¢rucial role in /55
determining the shape of the vertlcal veloclty profiles. Fig. 1la
depit¢ts a typical profile, such as those found by Van Veen [17]
by means of numerous tidal measurements off the Dutch coast.
That curve can be represented analytically by the well-known
empirical power law

u(z) __..x z + h
R 650)

where Van Veen found ¢ = 5 to be the most favorable ¥alue. Charac-
téristic features of thls profile are that

~— from the surface to the bottom, the water flows essentlal-
ly in the same direction,

—— the velocity is greatest at the surface,

-- the velocity right at the bottom 1s zero;

-~ the velocity 1s practically constant over a long vertical
distance (i.e. vardesionly slightly from a mean value u) and
undergoes a steep drop only in the immediate vicinity of the bottom.

It was already mentioned previously that the boundary condi-
tions (22.2) or (22.3) would not suffice by themselves to

reproduce the measured profiles given in Fig. 1la in the HN
model, '

52



What is crucial is that this proflle 1is obvicusly influenced
strongly not only by the boundary condltionuaat the bottom, but
alsoc by the variations In vertical momentum transfer wilth depth.
If the vertlcal exchange coefficlent A, 15 assumed to be constant,
-~ aB has been done so far -- the vertical exchange term can be
written In the form employed in Eguation (16.1):

2%
LAy 5 (51.1)
! az

This expression has a substantial influence on the vertiecal pro-
file. If it 1is supposed that the system has reached a steady
state, and that the horizontal gradients of water level are
slight, this profile is described by the -equation

which corresponds to a linear rise of wveloecity from the bottom
to the surface in the form

L

u(z}) = c1z + ¢,

Wwhere cj] and cp aree¢constants. This means that the natural verti-
cal profile of veloeity given in Fig. 1lla 1s not adequately
approximated in general when (51.1) is employed. The more this
term dominates the other term in the equation of motion (16.1),
the greater the tendency toward a linear préfile willbbe. This
result does not make any difference as far as the numerical
behavior of the solution 1s concerned, but it 1s very important
for practical condiderations, since it makes the HN models de-
Sitened so far appear somewhat unfit for applilcations.

How can theseiliN models be improved? That is, how can they
be better adapted to natural situations? In view of the above
analysls, 1t seems logical to abandon the assumption of a constant
vertical exchange coefficient and to represent the exchange term
by the expression

i

2
1 22 vy | (51.2)

W
-]
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whlch can be derived directly from Newton'ls friétion equation
{(ef. Bverdrup [24],

Now the difficult part is to find a suitable law to describe
the vertical turbulent exchange Ay as a function of depth. Numeri-
cal data on Ay in the literature vary widely and depend heavily
cn the type of flow under investigation. Usually, just one
value is given, intended to cover an entire range of depth (cor-
reaponding to Ay = const). This order of magnitude is 103 cmé/sec
(S¥erdrup [24], p. 482). Sverdrup merely makes a roughbtgquali-
tatlve statement about the vertical distribution of Ay, stating
that near the boftom =small values were measured throughout, while
large values occurred at a great distance from the bottom. Kagan
[25], who locked for a suitable expression for Ay to use 1n ana-
lytical studies of three-dimensional motion, arrives at the law

A*
oA (Z) = v.
i Y * .
} {%—-A‘,, if-. - h +d= zz-h \ (52)

after a thorough study of the literature, in particular of the works
of Boden [26], and after 1s own ilnvestigations. I (52), 4 1s

the thickness of a boundary layer
near the bettom. Thils approach
therefore keeps Ay constant from
the surface down to a point near
the bottom, followed by a con-
tinuous ftransition to a linear
drop to zero in a boundary layer
near the bottom (Fig. 17). Two
methods now suggest themselves
for matching the HN model to the
natural situatlion:

(1) Theuapproach given in

(52) 1s employed. Since the
boundary layer near the bottom
1s very thin relative to the
L total depth, thils can only be
Fig. 17. Ay(z) for a two- done by suitably refining the
layer model with a llnear grid network near the bottom.
drop near the bottom.

4

(2) A two-layer model is

used, with a constant exchange

coefflcltent Ay* above_the boundary layer, and a smaller constant
exchange coefficlent Ay in the boundary layer.
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r
f A A% A ~ We will take alternative
! v v o =1 (2), Numerically, this case
: can be implemented by pro-
viding a boundary layer of
thickness d as the fdéwest grid
ke =K-2 element in the vertical direc-
B tion (Filg. 18). Now assuming
that right at the bottom, the
exchangetterm (51.2) dominates /58
J h=H-1 the other terms in the equation
¥ ? . of motion (16.1) te such an
| SRR =K extent that those other terms
I NIRRT 7RTAY, can be neglected (which appears
SR T e legitimate for the boundary
Fig. 18. Ay(z) for a two- layer), and hence that the
layer model with homogeéeneous equation
conditions in each layer.

ﬁ P
A ? \\\\ (53)
{ Ja (AV 5%) =0

applles, we obtain an easily manipulated boundary-layer condition
at the bottom, Namely, in difference form, (53) means that (cf.

(27.1)):

— | ——

i - - \
g 2 (" k21 | ¢ Tkt “K) _ o

]‘ a K_lz-bd vV A e1? v d

b - E . .

If, in line with boundary condition (22.3), we suppose that there
is no motlion at the bottom, ug = 0. We then obtaln the relation-

ship:

(54)

Introducingiithis conditlon (54) makes 1t simple to simulate
the boundary layer near the bottom in the HN model. The quan-
tity « 1s a dimensionless parameter which can be varled in con-
formity with the model until sufficient agreement 1s attained " /59
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between the calculafted andcmeasured vertleal prdéflles of velocity.

In this way, the difficulties involvedlin a gquantitative determina-

tion of x on the basls of measurements of vertical exchange in
boundary layers are avolded., The parameterlzation presented here
was already noticed by Kagan [25].

If, in line with boundary condition (22%2), motion is per-

mitted at the bhottom, a boundary-layer conditioen analogous to
(54} can be derived.

ITI. Selected Examples

1. Tides in Canal of Constant Depth

Example 1:

The Mp tide is studied in a simpZe canal model of constant
depth (92 km long, 50 m deep). The grid employed can be seen
in Flg. 19.(ef. Fig. 9). With a horizontal spacing of AX = § km
and a constant vertical lncrement of Az = 10 m, there are 11
internal r-points and six computing planes in the vertical dilnec-
tion, the plane k = 1 coincided with the undisturbed surface,

and plane k = é with the bottom. The tide is given as a sinusoidal

wave at r-polnt 13 with an amplitude of A = 100 cm. The time

step is At = 5 min and the exchange coefficient is constant:
Ay = 103 em?/sec.

im= 1 2z 3 4 5 6 7 8 g 1Iconno12 13
¥ D=~ A= @~ PX-PDX-PX-P--@ -x-@-x-@—x—@—x—@ux-@ k=1
|
|
Wem e G W mm & I G X Qo e G Yo Gt irm © Yo @ Y om O e X & —X— O 2z
' |
|
| X Q=X O O X O ) — 0= X — O =X — 0= X— O =X~ O =X —0 ~X— 0~ x~—0 3
' I
Hem O e O Yrm O Y — O — X — G )= O =) — O} O =X~ O~ X— 0= — O—x—0 4
i
Womrm O e P M O — = O Ko O M O H— O~ K O X e T e K = O = Xm0 =X — T [
[
!
Wi Qe K O o I el e G Hims D i O e W B o omr O W mm O e O e W Qoo X 2O 6

Flg. 19. x-z grid of the model canal (Ri= 92 km,
h = 50 m}.
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After four periods, the calculation is practically stationary,
i.e. the water level changes by less than 1 mm from one period
to the next, and the velocities by less than 1 mm/sec.

Tlem)
_
7 *
100 3 - \
T 4 \
[ - :
b
—_—t
z
0~ — + + + + + +
+ + + + a

7

8 e

3

i -

Fig. 20. M» tides in canal of constant depth. Water
levels at differeht tidal phases (every elghth of a
period).). The tide waves are generated on the right,
and the canal is closed on the lefsg.

Xey: a. Polnt

Fig. 20 depicts the water lewel along a leongltudinal section
for elght different tide phases. The effect typlcal of canals
of these dimenslons 1s found, namely that the amplitude of the
water level increases fwoward the end of the canal. It should also
be observed that the water level rises and falls practically
simultaneously over the entire canal, so that no nodes or anti- /61
nodes can form within the canal. This oscillation pattern is -
consistent with well-known results for standing waves in canals
of constant depths, as glven by e.g. von Trepka [27]. The e

equation

L = T/gh (T is thepperiod)

yields a value of almost 1000 km for the wavelength L of the M,
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type 1f h = 50 m. Thils value 1s many times the length of the
canal. The linearity of the starting equatlonsilts manifested 1n
the virtually mirror-symmetric surface pattern relative to the
axls £ = 0 for tide phases T/2 apart in time,

The horizontal and vertical velocitles distrlbutions are
given in Fig. 21 for two selected tidal phases along a lengthwise
section of the canal. In order to bring ocut the relatively small
vertical components of the veloclty, the vertical dimension was
stretched by a factor of 800.

Horizontally, the flow velocity 1s a maximum at the entrance,
and vertically, 1t 1s greatest at the surface, the veloclty
decreasing toward the end of the canal and toward the bottom. At
theeentrance of the canal, the flow vector has only a relatively
small vertical component. Thellatter grows toward the end of the
canal and, given the distortion in the diagram, results in a
predominantly upward or downward flow at the fixed boundary. The
upper diagram (influx and upward motion) 1s associated with the
canal f1lling, and the lower pattern (outflow and downward motion)

wilth the canal draining (c¢f. Fig. 20).

The line connectling the tips of the arrows for a fixed point

in the horilzontal plane yields a vertical profile, which is
analogous to that discussed later in Fig. 37 (top).

2. Tide in Canal of Variable Depth

Since marine areas of constant water depth are very rare in
nature, one of the principal cbjectives was to incorporate a
variable depth profile into the HN models at an early point. In /63
order to accumulate numerical and programming experience, some
simple canal models with schematle depth increments were first
investigated. The properties of the ¥Mp tide in a canal 92 km leong
with variable depth was studied under conditions otherwlse
l1dentical to those 1in Example 1.

The depth profiles employed are shown in Fig. 22.

Example 2: canal 50 m deep, with ridge 20 m deep in middle;

Example 3: canal divided into two sections, one 20 m deep and the
other 50 m deep;

Example 4: canal with stair-shaped configuration (five levels with /64
depths of 10, 20, 30, 40, and 50 m).

The results of these studles aregsummarized 1in Figs. 23, 24,
and 25: as in Example 1, the diagrams show the fTorm of the water
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surface (for eight tidal
phases) and the velocity dis-
tribution (for two tidal
phases) along the léngitudinal
section for the steady state.

2wy LEirsticonsidennthehwater
levelsdifItdwas found that
the modified depth structure
had had a decisive influence
on the configuratdon of the
water surface. There 1s
greater shape variety in the
longitudinal profiles, and
extrema are observed in the
intericr of the canal. It
! is characteristic that there
: are now points in the canal
| (indicated in the drawing by
i a vertical linelidistinguished
ﬁ ; by a particular steep water-
| = ! level gradient, thus sug-
gesting an os¢illlatorynndde.
This effect occurs in the
region of the ridge in
: Example 2 and near the change
\ in depth in Example 3. IH
' . Example 4, there are actually
Fig. 22. Schematics of canal two such "nodes."
models with simple depth incre-
ments (upper three) in compari- The greater complexity
son to model with constant of these curves are comparéd
depth. The tide 1g generated with those in Fig. 20 is a
at the right, and the canals are symptom of the fact that the
closed on the left. water level in the canal no
longer rises and falls simul-
taneously along 1ts entire
length. Parts separated off by obstructions and shallow areas of
the canal are not capable of immediately following the motlion of
the water level at the entrance. They participate in this motion
with a certain phase lag, so that sometimes the water level in
these sectlons is still rising while the level has already begun
to fall at the entrance, and conversely.

N —

VRPN ——

e —.

I

The velocity flelds have also been greatly altered by the
modified depth structure. The changes in depth alter the cross
section and thus intensify vertical transport and raise horizontal
velocitles are particularly shallow points. Inherently, condi-
tions are most drastically modified near the disturbance, i.e.
the change 1in depth, whlle otherwise there 1s a tendency to
preserve the original state, namely in the entrance zone of the
canal-.
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Example bH:

Already with a view to practical applicationsaand thus to HN
models conforming to natural conditions, the next example dealt
with a canal with a "natural" depth profile: from the IfM's
HN model of the North Sea, the Grimsby-Esbjerg depth proflle was
taken and converted to a canal model (Fig. 26). (In order to
make 1t easler to compare it with the models Just discussed, the
canal was ggain taken to include only 13 points, so that the
profile terminated before the Danish coast of the North Sea was
reached.)

;m=123456789101112131
1 @X-@ XD -X-@D -5~ DX DX DH- DX D-X-@ - D% D k=]

i

1 K =X — O —K—O—H—— X~ 0 —X— 0 ~X— 0 —K— O =W~ O =X~ O =X O ¥ O 2
! :
' [}
k o-%;g;j-o—*—o—w—o—x-o-x—o—x—o*x—o-x—o—x—o—xqo 3
3 i
\ X O =X 0% 00— X~ 0 == 0 =) =0 —X—0 — X~ O —}—0 —x—0 4
| WU O == O -9-|( :
E X— O :g;i—o—x-o—x—o—x-0—3—o-xwé 5
i ’ - O =x =0 -
| e
i = Q =X X=0 = &

/

Flg. 26. =x-z grid of the model canal with variable depth
(2 = 92 km, h as given by section n = 17 in the HN
model of the North Sea).

The canal is again 92 km long, and a tidal oscillation with
an amplitude of 100 c¢m was applied at the right edge. Fig. 26
shows that although the vertical spacing Az was constant, the
depth increments were no longer "quantized," 1.e. were no longer
multiples of Az, I1nstead conforming to natural conditions.

The most important results are collected in Figs. 27 and 28
for the steady state. First, Flg. 27 again shows the position
of the water level for various tide phases. Comparing these curves /6
with those for a canal of constant depth (Fig. 20), we find T
changes which are smaller than those in Examples 2, 3, and 4.
This indicates that while the present model, as a whole, does
exhibit a more complicated depth fine structure, it differs less
than the other models from the canal with constant depth. Only
the left end of the canal, in which the water is only about
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Fig. 27. M, tide in canal of wvariable depth.
Water levels at different tide phases (every
eilghth of a period).

Key: a. Poing

20omi.déep, is there agaln a phase lag in the tides and thus an
intersection polnt for different water levels (again designated
by a vertical line in the diagram).

Neither does the fiow diagram -- given in Filg. 28, again for
two tide phases -~ differ very much from that in the canal of
constant depth (Fig. 21). Because the water is shallower at the
entrance, the maximum velocitles here and over the entire canal
are greater than in Examplell. From Fig. 28, it can be seen that
there 1s a tendency for the tidal flow to follow the depth
profile.

3. Wind in Canal of Constant Depth

Example 6:

To calculate wind-induced circulation in a ecanal of constant
depth, the model reproduced in Fig, 19 is again employed, but
with slight modifications. It 1s assumed that the canal is also
closed on the right; the corresponding fixed boundary corresponds
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Key: a. PPint

to u-point 13, so that the canal now is 96 km long. A constant

west wind (blowing from left to right) with a veloecity of 20 m/sec
is assumed. The other parameters are the same as in Example 1.

The tangential wind-stress coefflicient was chosen to be A = 3.2:10"6
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Fig. 29 shows the configuration of the water surface and the
velocity distribution aleong a longitudinal sectlon for the steady

state, which was reached after about 2 days (model time).

The

water level has the form of an. incllned plane; 1in the west, 1t
is below the undisturbed level, and in_the east it 1§ raised by

the same amount (to an accuracy of 10~3 cm).
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Top: water level in steady state.
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Steady wind over cleosed canal of constant depth.
velocity
The broken lidne shows a
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In the lower picture, thecheight of the basin 1s again ex-
aggerated by a factor of 800. The water at the surface flows in
the direction of a wind with a relatively high velocity. Wheniiti
reaches the right edge, it plunges toward the bottom, resulting
in a broad countercurrent moving toward the left deep In the water.
At the left edge, the water again rises and once again falls
under the direct influence of the wind. The vertical profilles
occurring within this circulation correspond to those in Fig. 38
later on. The only points at which there 1s an appreciable ver-
tical component to the flow veloclty are the ends of the canal -
{(with maxima at a depth of about 20 m; in the rest of the canal,

w < 10-3 cm/sec).

As has already been emphasized above, this result for wind-
driven circulation in a canal conforms far better to natural
conditions than the result of ah HN model with vertically inte-
grated equations. The latter model yields the same water levels,
but also vanishing flow velocitlies. In the present model, the _
kinetiéuvenergy of the wind is converted intc the potential energy it
of the backed-up water and into the kinetic energy of the
circulation.

4., Tide in Basin of Constant Depth 73

Example 7

The first really three-dimensional studies (1.e. in a region
extended In two horizontal directions and one vertical one) were
conducted in a simple rectangular basin 100 km long, 48 km wide,
and 50 m deep. The grid ~- just for the case of a closed basin,
however —-- can be seen in Pig. 30; it was based on the canal
model (Fig. 19). The network comprises 72 internal r-points and
six computlng planes in the vertical direction. The grid con-
stants are then AXx = Ay.= 8 km and Az = 10 m. According to the
CFL criterion (13), the time step may then be At = 4 min. The
cother constants used in the calculation are the vertical exchange
coefficlent Ay = 103 cm?/sec and the Coriolis parameter /7h
£ = 2¥2-10~% sec-l. At the bottom, the flow was assumed to be -
zero in accordance with boundary conditions (22.3).

In this three~dimensional HN model, we first studied the
vehavior of an M, co-oscillational tide, generated at the z-polnts
of the north entrance (n = 1) by prescribing a sinusoidal wave
with a2 uniform amplitude of 100 cm and a constant phase. The
steady state (defined to be the state 1n which the water levels
and velocities .2t identical times within successive periods)
differ by less than 1 mm and 1 mm/sec respectively) is reached
after nco more than four periods.
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m= 2 3 4 5 6 7
[~ ) * ’ : 1 We will dispense with a
n= 2 | TX R X FXH X+ X+ ¥ detajled presentation of the
. . , . . ° results of the analysils,
3 X 4+ X + X + X + X + X + x which would consume a great
s - o v . . . deal of space in this case.
| X 4+ X + X + X + X + X + x The development of tides in
4 . . . . . . rectangular basins has been
studied wvery thoroughly
g T X H X X4 x4 X in the literature (usually
N . * ] . * with the ald of vertically
X + X 5 X + X + X 4+ X + X integrated hydrodynamic
6| . e e e e . differential equations),
) &0 that we can restrict ocur-
7 R E e x4 x o ¥ Selves to certalin important
y ° ¢ ¢ * * aspects of the vebtical
X + %X + X + x + X + x 4+ x structure. These are shown
T in Fig. 31, which contains
| X4 X 4+ X F X+ X+ X 4 X the tidal-flow ellipses in
9 . . ) . . . five horizontal planes
(surface, 10.m, 20 m, 30 m,
T T L N S and 40 m) for four selected
. . ’ . . . grid points. The sketch in
x X 4+ X + X + X + X 4 X the upper lefthand corner
1" o . o ° . of each diagram indicates
‘ ’ the position of the point in
12 S A A the basin. The two lower
y : * *.t ° diagrams haveaa scale en-
;3‘ + %+ kot o+ X+ X +_} larged by the factor 2 for
L. » v ° . . clearer presentation.
m = 2 3 4 5 6 7 The tldal flows near
the entrance have the
h= ? T O x@x B xBx&x 4)1 greatest magnitudes, and
2 ¥ 0 £0«0x 0«0 X0 the figures there have
3 1 0 x QO « 0 x 0 x 0 x O x relatively low eccentricities.
L X O X O X0 £ O X 0 £ O X The further one penetrates
510 x0 «<0xo0x0x0 x into the interior of the
6t kO k-0 X O KO -~ O basin (in this case, toward
& the south), thellower the
e _ N velocities and the greater

the tendency for the tidal
flows to become narrow
ellipses, finally forming
virtually alternating flows.
It should be pointed out,
however, that the flow
figures shown here refer

to polnts situated near

the axis of the basin,

Fig. 30. Three-dimensional grid
of the rectangular basgin with
constant depth (& = 96 km,

w = 48 km, h = 50 m). Top:

top view; bottom: cross
section.
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Fig. 31. M, tide in basin of constant depth. Tidal-flow ellipses

in relation to depth for four selected peint. The numbers by

the ellipses give the depth in m. The numbers by the phases lines
in the first [bottom of caption cut off].
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In all cases, the monotonic decrease in velocity with depth
is very evident; the profiles resemble those found for the canal
(cf. Fig. 37). It can also be seen that the direction of the
tidal-flow ellipses is depth-dependent. The deeper flow filgures
are rotated toward the left (in the mathematically positive sense)
relative to the ones near the surface, and this rotation in-
creases with increasing distance from the entrance. Nevertheless,
ellipses associated with points on the same vertical line have
very similar forms.

It should also be pointed out that the sense of the rotation
of the flow figures for one and the same point is the same at
all depths{@¢&f. the hour figures in the first diagram) and that --
despite the rotation of the axes -- corresponding sections on
elllipses assoclated with points on the same vertical line are
traversed at roughly the same times. This means that &.g. the
flows of maximum magnitude for a fixed position (n,m)} occur at
roughly the same times at all depths. Kagan [25] arrived at a
silmilar result in calculating tidal-flow ellipses for the Yellow
Sea.

5. Wind in Basin of Constant Depth

Example 8:

The following investigations are based on the basin 96 km
long depicted in Fig. 30. By analogy with Example 6, the wind is
assumed to be a uniform north wind at 20 m/sec, blowing over the
entire basin and constant %n time. The tangential wind-stress
ceefficient is_Xx = 3.2-107° and the vertical exchange coefficient
s Ay = 10 cm?/sec. Condition (22.2) is employed as the
boundary condition on the bottom, so that non-zero flow at the
bottom iIs also permitted.

Fig. 32 shows the gddbal clrculation system which has de-
veloped in the steady state after 20 days (model time): the
veloclty fields in horizontal planes at six different depths are
depicted.

At the surface, there is a very intensive flow system with
vakious directions. By and large, the flow is shifted to the /78
right of the wind direction. The absolute magnitudes of the velo-
cities decrease rapidly with Increasing depth, and the directions,

o
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particularly in the central portion of the basin, vary widely.
For instance, Just 20 m down, there 1is a broad northward current,
while the surface flow is predominantly toward the south. Never-
theless, the flow arrows along thewwestern and eastern edges,
which always have a sbuthwards component, indicates that trans-
port compensatlon between the surface current and the deep
current does not.in general take place separately at every point
(as in the canal, Example 6), but 1s supplanted by a three-
dimenslional compensation. The flow patterns at every depth can
be transformed onto themselves by (axially symmetric) north/sbuth
and subsequent east/west interchange. The relatively high
velocity can be ascribed to the relatively low energy dissipation,
whlch is a consequence of the relatively small vertical exchange
goefficient and the minor bhottom friction betause of condition
22.2).

Vertical flows were not calculated in this example.

An obvious step is to compare thids situation with Ekman's
drift current theory. First, the vector dlagrams of the flow
velocities at different depths are drawn in Fig. 33 for three
points. ‘fAcshiiakd insert shows the position of the point within
the basin.

In the ideal case, the line connecting the heads of the vee-
tors should yield the well-known Ekman spiral. The curves
calculated for this case differ somewhat from the Ekman pattern,
and the dlscrepancy cobviously decreases as one moves into the
interior of the basin. This situation becomes cemprehensibvle,
when it is recalled that Ekman started from an ocean which was
unbounded horizontally. The closer one comes to the edge in the
present model, the more seriously this assumption is violated.

In all three cases, there is a deflectlon teward the right
at the surface; the angles are {(from west to east) 20°, 99° and
57°. While the flow rotates toward the left with increasing depth
at points at the very edge, the flow at points further in toward
the center -- in line with Ekman's theory ~- rotates further
toward the right, turning back toward the left only 1n ithe
vicinity of the bottom, © this fact 1s also consistent with Ekman's
theory of elementary flow, obtained under the assumption of finite
water depths. For the purpose of a qualitatlive compafison, a
curve given by Ekman [28] 1is drawn next to the right diagram, this
curve having been obtained analytically for a water depth of
h =1.25D (D = Ekman's friction depth). The curves resemble
each other quite cidsely. :

In the present case, the friction depth is found to be

——-—'1 -

24y [2.1072
/ D =T‘-J—f— =‘“- ___——::-l: m = 40.7 m -
] 1.2-10 )
!
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Fig. 33. North wind in basin of constant depth.
Ekman flow figures (veloecity - vectors at various
depths) for three selected polnts. The position of
the point is shown in the sketch to the upper left
of each diagram. The numbers give the depth in
meters. The diagram In the box at the lower right
shows a flow figure glven by Ekman.

At this depth, Ekman states that the direction of the flow should
be opposlte to that of the surface. The diagram for the polnt at

the bottom right shows that this is actually the case in the
numerical model at this point.
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Lastdyy Fig. 34 permits a comparison with the unsteady Ekman
theory. Thils diagram deplcts the line connecting the velocity
vectors at the surface at the point (6,4) (ef. Pig. 30) in rela-
tion to time (hodbgraph). According to Ekman [28], the velocity
vector, in "homing in" on the U45°-direction, travels along the
curve in the form of a Cornu spital (ef. Fig. 34, right). Aside
from the fact that the theoretical limiting angle of 45° is
exceeded by 12° in the present example, the two hodographs exhibit
remarkable similarity, particularly with regard to the times at
which the specific sections of the curves are traversed.

;J 10 20 cm/sec.

Fig. 34. DNorth wind in basin of constant depth. The
position of the tip of the surface vector in relation to
time for the point (6,4); cf. Fig. 30. The numbers give
the time in hours from the start of the wind. The
diagram in the box at the lower right shows the corres-
ponding curve as given by Ekman's theory.

Key: a. Direction

75

~
oo
=




™
foe
3]

I

6. Stability of the Explicit Methods

Example 9:

In order to test numerically the stability analyses carried
out on the explicit method 1in Section II.4.1, a number of HN
models with various constant vertical spacings Az were studied for
the case of a constant wind. As in Example 6, a canal was repre-
sented by s8lx computing planes, the depth of the canal h = 5Az
depending on the choice of Az. Example (A) on p. 39 required a
vertical distance step of

Az > T.HE8 m (55)

based on the theory of numerical stabllity. The calculations were
therefore arranged so that various spacings near this critical
value were employed.

The results of elght representative computations{{for the
values 4z = 5, 6, 7, 7.3, 7.5, and 7.45, 7.48, and 10 m) are
collected 1n Fig. 35. The latter shows (a) the water level at
point 13 of the model in Fig. 19, considered as closed, and (b)
the horizontal velocity at the surface at point 12, both as
functions of time. TFor reasons of clarity, these diagrams are
subdivided into a long-scale (time interval 10 hours) figure at
the top and a short-scale (time interval 10 ‘days) figure at the
bottom.

On the whole, the result of the numerical computation il-
lustrated in Fig. 35 agrees very well with the theoretical result.
In particular, unstable behavior was in fact found when the spacing
Az was less than 7.48 m. The "greater" the violation of criterion
(55) the sooner the "overrun" (excessively large positive or nega-
tive numbers) occurred. For instance, the computer broke off
the calculation for Az = 2 dr 5 m after just 1 hour (12 time steps),
but not for 7.5 hours when Az = 7.3 m and not until 1.5 days when
Az = 7.45 m. It is noteworthy that the instability appears much /84
earllier in the velocity than in the water level, so that even
with extreme velocities, the computation continues for quite a
while before the arithmetic check interrupts it. The appearance of
the instabllity 1s always preceded by a monotoniec drop in the
eastward velocity at point 12, which finally turns around into a
growing westward (= against the wind!) flow.

To this extent, the HN model with Az = 7.48 m also harbors
the danger of instabllity, although the water level has already
achieved a relatively steady value after 10 days. In point of
fact, the value Az = 7.48 m st111 violates criterion (55). Un-
fortunately, there is no corresponding comparison calculation with
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WR#g. 35. Stability of explicit difference method with varilous
vertical spacings =z. Water level and flow velocity at surface
at right side of canal model depleted in Fig. 29 (wind) as func-
tions of time. The two upper diagrams cover a period of 10 hours,
and the lower a 10-day interval. The numbers by the curves glve
the vertical spatéing in meters.

Az equall to about 7.50 m, covering a perlod of about 10 days,
which should then show complete stability {(with respect to
velocities as well). The corresponding curves for Az = 10 m are
given, and exhibit unambiguously stable behavior.

In summary, this series of numerical tests has demonstrated

the practical effectiveness of the theoretical stability criterion
derived above. -

7. Comparison Between Explicit and Implicit Methods

Example 10:

The explicit and implicit HN methods were ccampared for the
case of wind-induced motion in the closed canal discussed in
Example 6.

Fig. 36 depicts the vertical profile of the horizontal velo% /85
city for various HN models, as found for the steady state over
the entire canal (cf. Flg. 29). The curve on the right was first
obtained with the aid of the explicit method and a constant
spacing of Az = 10 m. Within the output accuracy of the computer
(10-3 cm or cm/sec for water level and speed respectively),
coincides with the corresponding result of the impdicit method
with the same choice of spacing.

The center curve and the outer curve on the left were obtained
with the aid of the implicit method for the same wind-induced
motion, but with other spacings. The grid was refined near the
bottom in order to get a more detalled picture of the bottom zone,
which 18 very 1mportant dynamically. The intervals ranged from
2.5 m (center curve) to 0.25 m and even 0.01 m (curve on the left)
at the very bottom. As Example 9 indicated, the lower limit of
the refinement would have been about 7.5 m for the explicit
method; the implieilt method, on the other hand, even with the
narrow spbacing chosen here, provides stable solutions -- consis-
tent with theory.

Fig., 36 shows that the solutions obtained fonutheeidentlcal
problems wlth different vertical spacingsaagree quite well wlth
each other. The further apart the spacing patterns were, the
e
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Fig. 36. Comparison between explicit and implicit 4if-
ference methods. Vertical profile of flow vebocaty in
steady state for wind-inducéd motion in canal model of

Fig. 29.
Right curve:

Center curve:

Left curve:

expliclt and implicit methed for
Agz = 10m (k = 1,...,5)
implicit method for Apz = 15, 15, 15,
2.5, 2.5m (k = 1,...,5)
implicit method for
Apz = 15, 15, 19.5, 0.25, 0.25 m {
(k = 1,..4,5)
Ayz = 15, 15, 19.89, 0.10, 0.01 m
{(k = 1,...,5).

79

~
oo
[y



greater the differences that resulted. The principal numerical
dlfferences ocecurred in the approximation of the shear-stress term
at the surface, leading to slightly different surface velocities
and eventually affecting the entire vertical profile.

On the whole, however, the vertical profiles for horizontal
veloclty arevvery similar and show that the implicit method can
be employed with consistent success.

g
oo
|

8. Vertical Profiles

These numerical studies have been based predominantly on
the boundary condition (22.3) == u = 0 at the bottom. This
zero-flow condition 1is very common in the literature. Meéasure-
ments have corroborated 1t, although current measurements are not
practical right at the bottom, but must be taken a few centi-
meters away.

For comparison, computations have also been performed with
the boundary condition (22.2) —-- in general u ¥ 0 at the bottom.

Example 11:

A direct comparison will now be made between the two boundary
conditions with the aid of a canal model. The vertical profiles
of flow velocity at an interlor point during different tide phases
are plotted in Fig. 37 for the case of the M, tide in a canal of
constant depth (cf. Example 1) with a constant vertical exchange /88
coefficient Ay = 103 cm?/sec. In the upper diagram, boundary
conditions (22.3)wwas employed, and boundary condition (22.2) in
the lower one. Water level vs. tlme is given (with the same
height scale) in each case -- as the upper boundary of theupnofiles.

It is evident that the second boundary conditiofl {lower pic-—
ture), which permits non-=zero velocities at the bottom, 1is
hardly suitable for reproducing the observed tidal-flow profiles:
the small amount of hottom friction implies that the horizontal
vélocity will decrease only slightly with increasing depth.

The condition u = 0 at the bottom (upper piecture), on the
other hand, leads to relatively steep vertical gradients for the
horizontal velocity. The maximum flow velocities at the surface
are now much larger than in the other case. During most of a tide
perlocd, the proflles are characterized by a monotonic decrease in
velocity with depth. Only when the tide is turning are there flow
distributions with maxima below the surface (at 7/h) or even with
a reversal of direction ¢at 0h). It is obvious that the tide
turns first at the bottom.
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Fig. 3%. 5 tide in canal of constant depth for dif—
a

ferent boundary conditions at the bottom (Ay = 103 cm?/sec).
Vertical profiles of flow velocity in interior of

model canal deplcted in Fig. 19 (point m =

= 7) for va-
rious tide phases. The numbers by the curves mean

hours (after lunar transit at Greenwich).
Top: boundary condition up = 0 (cf. (22.3)).

Bottom: boundary condition tg = rluglug (ef. (22.2)).
The upper boundary of the profile is the associated
water level.

Water level as a functlon of time is roughly the same in
both cases.

The vertlieal profiles
dlagram were glven 1in very
Sverdrup based his work on
differential equations and
coefficient Ay.

of tidal flow depicted in the upper
similar fashion By Sverdrup [18].
analytical solutions of hydrodynamic
likewise used a constant exchange

The vertical profiles computed here do agree roughly with
the observed curves, but do not adequately reproduce an essential
property of natural flow proflles, namely the steep gradient
near the bottom (cf. Fig. 39). To this extent, the conjecture

expressed in Section II.5 -- that assuming a constant exchange /8
coefflicient Ay would tend to produce linear profiles -- has been
confirmed.
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Example 12:

Fig. 38 shows an analogous depiction of vertical profiles
for a steady west wind of 20 m/sec over a canal of constant depth
(cf. Example 6). Ay = const 1n this case as well. The c¢chrono-
loglecal evolutiénitofif'the vertical profile at an interior point
from the onset of the wind untll the steady state is reached can
be seen from the diagram. The top curves are for boundary condi-
tion (22.3) and the lower . ones for boundary condition (22.2).

It is evident that the water is carried along by the wind
only in a redatively thin surface layer. Moving down from the
surface, there is an immedlate sharp drop in velocity, followed
eventually byaa reversal in the direction of the flow. Depending
on the boundary condltion prescribed at the bottom, the maximum
of the deep current 1s intermedlate (upper picture) or righttat
the bottom (lower picture). The shapes of the steady-state
profiles are such that integrating veloclty over depth at any
point in the canal yields the value zero, l.e. transport through
any section of the canal vanishes in the steady state.

In the upper diagram, a comparison is made with an analytie
solution given by Hansen [19] for the case of a steady-state
flow:

%, 3C ' 2 hz!
. _ __g_ s z K .
‘kk\u(z') = A‘V oz ( ) - 3 ) I
z' 1s measured positive up from the bottom (2' = h -~ z). The /91

agreement between the numerical and the analytical walues is quite
good throughout. In particular, the statement made by Hansen

that the maximum of the deep current occurs at z' = h/3 and that
the inversion in the directlon of the flow occurs at z' = 2h/3

is supported by the numerical results. Only near the surface do
the values differ slightly (cf. column 2 and 3 in Table 2). These
differences can be explained by the relatively coarse grid,
resulting in a correspondingly rough approximation to the slope

of the surface 93z/9x and the shear stress term (17.1). If (17.1)
i8& not approximated -- as 1t was in (22.1) -- by forward differs
ences, but instead by central ones, i.ew.in the form

kf”“”"-ﬁg i L é;uur

; Ay “('“'0;&'2“(‘“'2) =A|U(m)| U(m) fir alle m

!
i

the numerical solution agrees better with the analytie ones
{ef. Table 2, column 4).
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Flg. 38. Wind over a canal of constant depth with different
boundary conditions at the bottom. Vertical profilles &f flow
velocity in interior of model canal depicted 1in Flg. 29, Various
states between onset of wind and steady sftate. The numbers by
the curves mean minutes after onset of wind.

Top: boundary condition ug = 0 (ef. (22.3})).

Bottom: boundary condition tg = r|up|ug (c¢f. (22.2)).

In the upper diagram, polnts mark the values derived analytically
by Hansen's method.

Key: a. Steady state

TABLE 2. VERTICAL FLOW PROFILE u{(z). COMPARISONHBETWEEN
ANALYTIC SOLUTION AND TWO NUMERIC SOLUTIONS

;‘Depth,z uanalyt. nnéigr. unéﬁgr.
" (m) (cm/sec) | (em/sec)| (em/sec)
} 0 14,3 13.5 14,0
" 10 4.6 5,0 ¥.5
20 -1.7 -2.0 -1.7
30 -4.6 ~%.7 -4.,5
F 10 -5,0 -4.0 -3.9

Analyses have already been presented 1in Section II.5 to show
how the vertical profile in Figs. 37 and 38 might be made to
¢onform better to natural situations. The following examples
deal with a relevant seriesodfanumerical tests.

First, Fig. 39 depicts three vertical profiles measured by
different authors, all applylng to tidal flows. The profiles on
the left were obtained by Sverdrup [18] on the North Siberian
Shelf, at different hours duringaa tidal period. They show that
the maximum velocities in the tidal flow can also ocecur under the
surface.
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Fig. 39. Measured vertical profiles of tidal-flow velo-

city.

Left: according to Sverdrup [18)]. The Roman numerals

mean hours (after lunar transit at Greenwich).
Center: according to Van Veen [17]. The solid curve
reproduces the measurement, and the dotted
line is a profile obeying the power law.
Right: according to Siefert (provided personally). The
curve was measured in the Bay of Germany.

The central curve was obtalined by Van Veen [17] #n measure-
ments in the Straits of Dover and reflects the average situation
during an interval of several hours in the vicinity of the
greatest flood tide at a point near the French coast (M J. The /
broken line drawm in along with 1t represents the curve

0 - |

which provides the best meanh analytic approximation to the
measured curve.

\ta}
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Lastly, the curve on the right was measured by Siefert
(Neuwerk Researéh Group) in the mouth of the Elbe for the Flood
tide. It was kindly made available to the author.

A common feature of the dAifferent vertical profiles is that
—-- starting from the surface -- the veloclty is virtually con-
stant over a large distance, and begins to drop rapidly only
in a zone near the bottomm. In general, the curves can be
approximated gqulte well by a parabolic profile.
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On the other handd the profiles calculated and presented so
far (cf. Fig. 37) have very slight curvature. In defense, it
must be pointed ocut that conditions 1n the ocean are very conpbex
and thatoprdfiles of the form depleted in Flg. 37 have been ob-
served in specific cases. For instance, Van Veen and Siefert
also give some virtually linear profiles, and Curve V of
overdrup llkewise shows such a teridency. Nevertheless, the curves
given in Flg. 39 can be considered typical, and the numerical
model should be designed so that it is capable of reproduclng this
vertical behavior of the flow velccity profile.

That it is not enough to employ a vertical exchange térm Ay
different from those empléyed In previous tide calculations but
still independent of depth is demonstrated by Fig. 40.

5 1 15 20 15

cmpsec

10
20 A
/

[ 3]

P

st
Fig. MO 5 tide in canal of constant depth for
Ay = /sec. Vertical profiles of flow veloclty
in interior of model canal depicted in Fig. 19 (point

= 7) for various tide phases. The numbers by the
curves mean hours {(after lunar transit at Greenwikth).
Example 13:

Here the tidal study of Example 1 is repeated; howewver, in
place of Ay = 103 cm /sec, the vertical exchange coefficient 1s AL
now taken to be Ay = 102 cme/sec. As in Fig. 37, the resulting T
vertical profiles in Fig. 40 are depicted for pointm? of the

canal.

Tt is evident that near the bottom, the profiles have not
changed substantially relative to Fig. 37. However, the previous
almeat-linear drop of veloecity from the surface downward is no
longer present. The surface velocitles are considerably smaller
than in the previous case (Fig. 37);"insgeneral, the veloeity
increases with depth, reaches an intermediate maximum, and then
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drops to zero. To thils extent, a noteworthy approximation has
been achieved with this HN model to the case observed by Sverdrup
(Fig. 39). Hence, the low internalifniction in the vertical
direction results in more distinctlivenprdédfiles; the smoothing
effect brought about by the vertlcal exchange 1s naturally less
pronounced well Ay is smaller.

Example 14:

Substantial progress toward nature-like vertlical profiles
was achieved in a series of numerical tests 1n which the vertilcal
exchange coefficient was made a function of depth. We return to /95
the schematic in Fig. 18, in which Ay assumed a constant value
Ay in a thin boundary 1ayer at the bottom, and took on a likewlse
constant value Ay > Ay over the rest of the depth. By (54), this
approach ¢an be characterized numerically via a suitable ch01ce
of a dimenslonless parameter x proportional to the ratio of the
vertical exchange coefficients above and wlthin the boundary layer.
Since relatively littdé has been revealed about this ratio by
means of measurements, it should be legitimate to vary the
parameter « in a seriesodfaecalculations and finally to consider
representative that value which produces the most natural-looking
flow profiies.

Redevant HN studdes have been conducted for numerous values
of = in the tide model (Example 1) whiech has already bgen frequent~
ly emplog The results aressummarized in Fig. 41 (Ay =
/sec) Once more, the vertical velocity profile at
p01nt 7 in the canal model is plotted for various exchange-
¢ oefficient expressions and models (c¢f. Fig. 37).

In additlon to the boundary-layer graphs for « = 210, 1.0,
0.5, and 0.3 (thin solld curves), two other curves were plotted
for purposes of comparison: the profile computed in previous
models for Ay = const (103 cme/sec) (broken curve) and in a pro-
file derivedffrom the power law of Van Veen, which may serve as
a standard of comparison for verisimilitude (thilck solid curve).

Just how far away from natural conditions a model with con-
stant vertlcal exchange coefficlent really is can be seen
clearly in the diagram. The curves also show that this dis-
crepancy is Immedliately reduced by introdueclng a schematic
boundary layer at the bottom with an exchange coefficlent dif-
ferent from the rest of the depth interval. Through this series
of numerical tests, 1t has been found that the agreement between
the power-~law profiles and the HN results 1s best for a2 = 0.3.

In fact, Fig. 41 shows that the two curves differ only slightly
in this case.

The numerical simulation of this boundary layer presents no
significant difficultiesuin programming or with respect to the
stability of the method.
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Flg. 41 (continued)

i ﬁ.V(z)

Ay(z) =

It
T

Empieical power law

x‘%u(z) ='?E u—&l?

h

Key: a. Family parameter
b. Power law

IV. Concluding Remark

These 1lnvestigations have contributed to the three-dimensional
tneatment of hydrodynamic problems with the aid of HN methods.
The HN models designed here can be used to derive statements on
the vertical structure of motlions as well as to calculate hori-
zontal Flows. This offers a chance of attacking physical pro-
cesses in water which depend heavily on the vertlcal distribation
of flow velocitles, such as solid transport, with HN methods.

The examples cited here are restricted to wind-induced and
tide-induced motions In schematlc canals and basins, mostly of
censtant depth and with a constant vertical exchange coefficient;
to this extent, they have little to do with conditions in natural
geas. On the other hand, numerlical questlionsaassociated with
the three-dimensional extension of the HN method can be particular-
1y clearly recognized and resolved in theseussidmple models.

Moreover, two important steps have already been kaken with
regard to making the models conform betfter to natural conditiens:
the introduction of arbitrary depth profiles, and the 1lncorpora-
tion of a boundary layer near the bottom.

Of course, many questions are yet to be resolved, and the
models established here must be perfected and extendeddin various
directions. Thils will be the obJect of more comprehensive ana-
lyses. One of the main projects will be to develop three-
dimensional HN models for natural marine areas or rivers, in order
to be able to study, for example, tidal processes 1n the North Sea
or in the tldal estuaries of the Bay of Germany as functlions of
both horilizontal and vertical distance. The results presented
here for many examples, which usually agree well with availabale
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information or existing theories, Justify the hope that such
studies will be possible in the near future.
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